scholarly journals ZnO Quantum Dots Modified by pH-Activated Charge-Reversal Polymer for Tumor Targeted Drug Delivery

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1272 ◽  
Author(s):  
Yifan Wang ◽  
Liang He ◽  
Bing Yu ◽  
Yang Chen ◽  
Youqing Shen ◽  
...  

In this paper, we reported a pH responsive nano drug delivery system (NDDS) based on ZnO quantum dots (QDs) for controlled release of drugs. Zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) were introduced to modify ZnO QDs, which can help enhance water stability, increase blood circulation time, and promote endocytosis. After tuning of PCBMA/PDMAEMA ratios, the ZnO@P(CBMA-co-DMAEMA) nanoplatform shows a sensitive switch from strong protein adsorption resistance (with negatively charged surface) at physiological pH to strong adhesion to tumor cell membranes (with positively charged surface) at the slightly acidic extracellular pH of tumors. Anti-cancer drug, Doxorubicin (DOX), molecules were demonstrated to be successfully loaded to ZnO@P(CBMA-co-DMAEMA) with a relatively large drug loading content (24.6%). In addition, ZnO@P(CBMA-co-DMAEMA) loaded with DOX can achieve lysosomal acid degradation and release of DOX after endocytosis by tumor cells, resulting in synergistic treatment of cancer, which is attributed to a combination of the anticancer effect of Zn2+ and DOX.

2020 ◽  
Vol 46 (8) ◽  
pp. 9979-9989 ◽  
Author(s):  
Maryam Akbari ◽  
Mahdi Rahimi-Nasrabadi ◽  
Saeid pourmasud ◽  
Mohammad Eghbali-Arani ◽  
Hamid Reza Banafshe ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1899 ◽  
Author(s):  
Evgeny Apartsin ◽  
Nadezhda Knauer ◽  
Valeria Arkhipova ◽  
Ekaterina Pashkina ◽  
Alina Aktanova ◽  
...  

Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species—triazine-carbosilane dendrons readily self-assembling into pH-sensitive dendrimersomes. The dendrimersomes efficiently encapsulate anticancer drugs doxorubicin and methotrexate. Chemodrug-loaded dendrimersomes have dose-related cytotoxic activity against leukaemia cell lines 1301 and K562. Our findings suggest that triazine-carbosilane dendrimersomes are prospective drug carriers for anti-cancer therapy.


2017 ◽  
Vol 9 (2) ◽  
pp. 240-252 ◽  
Author(s):  
G. Bharath ◽  
B. Swarna Latha ◽  
Edreese H. Alsharaeh ◽  
P. Prakash ◽  
N. Ponpandian

Creatine phosphate used as a phosphorus source for synthesis of a HAp/GO nanocomposite toward protein/anti-cancer drug loading and selective pH dependent drug delivery platforms.


2017 ◽  
Vol 9 (33) ◽  
pp. 27396-27401 ◽  
Author(s):  
Hui Ding ◽  
Fan Zhang ◽  
Chaochao Zhao ◽  
Yanlin Lv ◽  
Guanghui Ma ◽  
...  

2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


Author(s):  
Sally Sabra ◽  
Mona Abdelmoneem ◽  
Mahmoud Abdelwakil ◽  
Moustafa Taha Mabrouk ◽  
Doaa Anwar ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 302-311
Author(s):  
Shulin Dai ◽  
Yucheng Feng ◽  
Shuyi Li ◽  
Yuxiao Chen ◽  
Meiqing Liu ◽  
...  

Background: Micelles as drug carriers are characterized by their inherent instability due to the weak physical interactions that facilitate the self-assembly of amphiphilic block copolymers. As one of the strong physical interactions, the stereocomplexation between the equal molar of enantiomeric polylactides, i.e., the poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), may be harnessed to obtain micelles with enhanced stability and drug loading capacity and consequent sustained release. </P><P> Aims/Methods: In this paper, stereocomplexed micelles gama-PGA-g-PLA micelles) were fabricated from the stereocomplexation between poly(gama-glutamic acid)-graft-PLLA gama-PGA-g-PLA) and poly(gamaglutamic acid)-graft-PDLA gama-PGA-g-PLA). These stereocomplexed micelles exhibited a lower CMC than the corresponding enantiomeric micelles. Result: Furthermore, they showed higher drug loading content and drug loading efficiency in addition to more sustained drug release profile in vitro. In vivo imaging confirmed that the DiR-encapsulated stereocomplexed gama-PGA-g-PLA micelles can deliver anti-cancer drug to tumors with enhanced tissue penetration. Overall, gama-PGA-g-PLA micelles exhibited greater anti-cancer effects as compared with the free drug and the stereocomplexation may be a promising strategy for fabrication of anti-cancer drug carriers with significantly enhanced efficacy.


Sign in / Sign up

Export Citation Format

Share Document