scholarly journals Studies on Chemical IR Images of Poly(hydroxybutyrate–co–hydroxyhexanoate)/Poly(ethylene glycol) Blends and Two-Dimensional Correlation Spectroscopy

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 507 ◽  
Author(s):  
Yeonju Park ◽  
Sila Jin ◽  
Yujeong Park ◽  
Soo Kim ◽  
Isao Noda ◽  
...  

Biodegradable poly-[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoates] (PHBHx) have been widely studied for their applications in potentially replacing petroleum-based thermoplastics. In this study, the effect of the high molecular weight (Mn = 3400) poly(ethylene glycol) (PEG) blended in the films of PHBHx with different ratios of PEG was investigated using chemical FTIR imaging. Chemical IR images and FTIR spectra measured with increasing temperature revealed that PEG plays an important role in changing the kinetics of PHBHx crystallization. In addition, two-dimensional correlation spectra clearly showed that thermal properties of PHBHx/PEG blend film changed when the blending ratio of PHBHx/PEG were 60/40 and 50/50. Consequently, PEG leads to changes in the thermal behavior of PHBHx copolymers.

2012 ◽  
Vol 49 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Young-June Kim ◽  
Min-Ho Jee ◽  
Eun-Hee Lee ◽  
Jin-Uk Choi ◽  
Dong-Hyun Noh ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1156
Author(s):  
Dejia Chen ◽  
Lisha Lei ◽  
Meishuai Zou ◽  
Xiaodong Li

The non-isothermal crystallization kinetics of double-crystallizable poly(ethylene glycol)–poly(l-lactide) diblock copolymer (PEG-PLLA) and poly(ethylene glycol) homopolymer (PEG) were studied using the fast cooling rate provided by a Fast-Scan Chip-Calorimeter (FSC). The experimental data were analyzed by the Ozawa method and the Kissinger equation. Additionally, the total crystallization rate was represented by crystallization half time t1/2. The Ozawa method is a perfect success because secondary crystallization is inhibited by using fast cooling rate. The first crystallized PLLA block provides nucleation sites for the crystallization of PEG block and thus promotes the crystallization of the PEG block, which can be regarded as heterogeneous nucleation to a certain extent, while the method of the PEG block and PLLA block crystallized together corresponds to a one-dimensional growth, which reflects that there is a certain separation between the crystallization regions of the PLLA block and PEG block. Although crystallization of the PLLA block provides heterogeneous nucleation conditions for PEG block to a certain extent, it does not shorten the time of the whole crystallization process because of the complexity of the whole crystallization process including nucleation and growth.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Xiangning Wen ◽  
Yunlan Su ◽  
Shaofan Li ◽  
Weilong Ju ◽  
Dujin Wang

In this work, the crystallization kinetics of poly(ethylene oxide) (PEO) matrix included with poly(ethylene glycol) (PEG) grafted silica (PEG-g-SiO2) nanoparticles and bare SiO2 were systematically investigated by differential scanning calorimetry (DSC) and polarized light optical microscopy (PLOM) method. PEG-g-SiO2 can significantly increase the crystallinity and crystallization temperature of PEO matrix under the non-isothermal crystallization process. Pronounced effects of PEG-g-SiO2 on the crystalline morphology and crystallization rate of PEO were further characterized by employing spherulitic morphological observation and isothermal crystallization kinetics analysis. In contrast to the bare SiO2, PEG-g-SiO2 can be well dispersed in PEO matrix at low P/N (P: Molecular weight of matrix chains, N: Molecular weight of grafted chains), which is a key factor to enhance the primary nucleation rate. In particular, we found that the addition of PEG-g-SiO2 slows the spherulitic growth fronts compared to the neat PEO. It is speculated that the interfacial structure of the grafted PEG plays a key role in the formation of nuclei sites, thus ultimately determines the crystallization behavior of PEO PNCs and enhances the overall crystallization rate of the PEO nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document