scholarly journals New Monomer Based on Eugenol Methacrylate, Synthesis, Polymerization and Copolymerization with Methyl Methacrylate–Characterization and Thermal Properties

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 160 ◽  
Author(s):  
Abdel-Basit Al-Odayni ◽  
Waseem Sharaf Saeed ◽  
Ahmed Yacine Badjah Hadj Ahmed ◽  
Ali Alrahlah ◽  
Abdullah Al-Kahtani ◽  
...  

Poly(eugenyl-2-hydroxypropyl methacrylate) (PEUGMA), poly(methyl methacrylate) (PMMA) and poly(eugenyl-2-hydroxypropyl methacrylate-co-methyl methacrylate) (PEUGMA-co-MMA) were synthesized by a free radical polymerization route in the presence of azobisisobutyronitrile. EUGMA was synthesized by etherification of the eugenol phenolic hydroxyl group with glycidyl methacrylate. Polymers and copolymers were characterized using size exclusion chromatography, Fourier transform infrared, and nuclear magnetic resonance. The effects of the encumbering substituent on the thermal behavior of the polymers and copolymers were studied by differential scanning calorimetry, thermogravimetry (TG) and direct analysis, using real-time, time-of-flight mass spectroscopy (DART-ToF-MS) methods. The results obtained revealed that for PEUGMA, the average molecular weight was 1.08 × 105, and increased slowly with the decrease in the EUGMA content in the copolymer. The order of the distribution of dyads comonomer units in the copolymer chains estimated by the Igarashi method based on the reactivity ratio does reveal a random distribution with a tendency toward alternation. The glass transition temperature of PEUGMA (46 °C) increased with the MMA content in the copolymer, and those of the copolymer fit well with the Johnston’s linearized expression. The TG analysis of pure PEUGMA revealed a significantly high thermal stability compared to that of PMMA. During its degradation, the preliminary decomposition was at 340 °C, and decreased as the MMA units increased in the copolymer. The DART-ToF-MS analysis revealed that the isothermal decomposition of PEUGMA led to a regeneration of raw materials such as EUGMA, GMA and EUG, in which the maximum amount was achieved at 450 °C.

2007 ◽  
Vol 60 (6) ◽  
pp. 400 ◽  
Author(s):  
Patricia L. Golas ◽  
Nicolay V. Tsarevsky ◽  
Brent S. Sumerlin ◽  
Lynn M. Walker ◽  
Krzysztof Matyjaszewski

Multisegmented block copolymers were prepared by the step-growth click coupling of well-defined block copolymers synthesized by atom transfer radical polymerization (ATRP). α,ω-Diazido-terminated polystyrene-block-poly(ethylene oxide)-block-polystyrene was coupled with propargyl ether in N,N-dimethylformamide in the presence of a CuBr/N,N,N´,N´´,N´´-pentamethyldiethylenetriamine catalyst. The preparation of multisegmented block copolymers was also demonstrated by the click coupling of propargyl ether with another diazido-terminated triblock copolymer, poly(n-butyl acrylate)-block-poly(methyl methacrylate)-block-poly(n-butyl acrylate), and a diazido-terminated pentablock copolymer, polystyrene-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-polystyrene. The formation of a product of higher molecular weight and broader molecular weight distribution was verified by triple-detection size exclusion chromatography, which revealed that typically five to seven block copolymers were linked together during the click reaction. Differential scanning calorimetry and dynamic mechanical analysis revealed that the amphiphilic block copolymer behaves as a viscoelastic fluid, while its corresponding multiblock copolymer is an elastic material. The multisegmented block copolymers with partially miscible segments exhibit higher glass transition temperatures than their precursors.


2019 ◽  
pp. 089270571985993 ◽  
Author(s):  
Khezrollah Khezri ◽  
Yousef Fazli

In situ copolymerizations of styrene and methyl methacrylate (MMA) by atom transfer radical random copolymerization in the presence of mesoporous diatomite were performed to synthesize various poly (styrene- co-methyl methacrylate)/diatomite composites. Special characteristics of the mesoporous diatomite were evaluated by X-ray fluorescence, thermal gravimetric analysis (TGA), transmission electron microscope, and nitrogen adsorption/desorption isotherm. Conversion and molecular weight determinations were carried out using gas chromatography and size-exclusion chromatography, respectively. Due to the pendant hydroxyl groups on the surface of the diatomite platelets and polarity change of the reaction medium, addition of 3 wt% mesoporous kieselgur platelets leads to increase of conversion from 69% to 81%. In addition, polydispersity index values of the poly (styrene- co-methyl methacrylate) chains increases from 1.14 to 1.39 by addition of 3 wt% mesoporous diatomite platelets. Increasing the thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 66.4°C to 72.5°C by adding 3 wt% of mesoporous diatomite platelets.


2020 ◽  
Author(s):  
M Wee ◽  
M Mastrangelo ◽  
Susan Carnachan ◽  
Ian Sims ◽  
K Goh

A shear-thickening water-soluble polysaccharide was purified from mucilage extracted from the fronds of the New Zealand black tree fern (Cyathea medullaris or 'mamaku' in Māori) and its structure characterised. Constituent sugar analysis by three complementary methods, combined with linkage analysis (of carboxyl reduced samples) and 1H and 13C nuclear magnetic resonance spectroscopy (NMR) revealed a glucuronomannan comprising a backbone of 4-linked methylesterified glucopyranosyl uronic acid and 2-linked mannopyranosyl residues, branched at O-3 of 45% and at both O-3 and O-4 of 53% of the mannopyranosyl residues with side chains likely comprising terminal xylopyranosyl, terminal galactopyranosyl, non-methylesterified terminal glucopyranosyl uronic acid and 3-linked glucopyranosyl uronic acid residues. The weight-average molecular weight of the purified polysaccharide was ~1.9×106Da as determined by size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS). The distinctive rheological properties of this polysaccharide are discussed in relation to its structure. © 2014 Elsevier B.V.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2575
Author(s):  
Smaher M. Elbayomi ◽  
Haili Wang ◽  
Tamer M. Tamer ◽  
Yezi You

The preparation of bioactive polymeric molecules requires the attention of scientists as it has a potential function in biomedical applications. In the current study, functional substitution of alginate with a benzoyl group was prepared via coupling its hydroxyl group with benzoyl chloride. Fourier transform infrared spectroscopy indicated the characteristic peaks of aromatic C=C in alginate derivative at 1431 cm−1. HNMR analysis demonstrated the aromatic protons at 7.5 ppm assigned to benzoyl groups attached to alginate hydroxyl groups. Wetting analysis showed a decrease in hydrophilicity in the new alginate derivative. Differential scanning calorimetry and thermal gravimetric analysis showed that the designed aromatic alginate derivative demonstrated higher thermo-stability than alginates. The aromatic alginate derivative displayed high anti-inflammatory properties compared to alginate. Finally, the in vitro antioxidant evaluation of the aromatic alginate derivative showed a significant increase in free radical scavenging activity compared to neat alginate against DPPH (2,2-diphenyll-picrylhydrazyl) and ABTS free radicals. The obtained results proposed that the new alginate derivative could be employed for gene and drug delivery applications.


2021 ◽  
pp. 096739112110147
Author(s):  
Ufuk Abaci ◽  
H Yuksel Guney ◽  
Mesut Yilmazoglu

The effect of plasticizer on dielectric properties of poly(methyl methacrylate) (PMMA)/titanium dioxide (TiO2) composites was investigated. Propylene carbonate (PC) was used as plasticizer in the samples which were prepared with the conventional solvent casting technique. Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX) and Differential scanning calorimetry (DSC) analyses and LCR Meter measurements (performed between 300 K and 400 K), were conducted to examine the properties of the composites. With the addition of plasticizer, the thermal properties have changed and the dielectric constant of the composite has increased significantly. The glass transition temperature of pure PMMA measured 121.7°C and this value did not change significantly with the addition of TiO2, however, 112°C was measured in the sample with the addition 4 ml of PC. While the dielectric constant of pure PMMA was 3.64, the ε′ value increased to 5.66 with the addition of TiO2 and reached 12.6 with the addition of 4 ml PC. These changes have been attributed to increase in amorphous ratio that facilitates polymer dipolar and segmental mobility.


Sign in / Sign up

Export Citation Format

Share Document