scholarly journals Synthesis and Solution Properties of a Novel Hyperbranched Polymer Based on Chitosan for Enhanced Oil Recovery

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2130
Author(s):  
Qingyuan Chen ◽  
Zhongbin Ye ◽  
Lei Tang ◽  
Tao Wu ◽  
Qian Jiang ◽  
...  

A new type of chitosan-modified hyperbranched polymer (named HPDACS) was synthesized through the free-radical polymerization of surface-modified chitosan with acrylic acid (AA) and acrylamide (AM) to achieve an enhanced oil recovery. The optimal polymerization conditions of HPDACS were explored and its structure was characterized by Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, and environmental scanning electron microscopy. The solution properties of HPDACS in ultrapure water and simulated brine were deeply studied and then compared with those of partially hydrolyzed polyacrylamide (HPAM) and a dendritic polymer named HPDA. The experimental results showed that HPDACS has a good thickening ability, temperature resistance, and salt resistance. Its viscosity retention rate exceeded 79.49% after 90 days of aging, thus meeting the performance requirements of polymer flooding. After mechanical shearing, the viscosity retention rates of HPDACS in ultrapure water and simulated brine were higher than those of HPAM and HPDA, indicating its excellent shear resistance and good viscoelasticity. Following a 95% water cut after preliminary water flooding, 0.3 pore volume (PV) and 1500 mg/L HPDACS solution flooding and extended water flooding could further increase the oil recovery by 19.20%, which was higher than that by HPAM at 10.65% and HPDA at 13.72%. This finding indicates that HPDACS has great potential for oil displacement.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Nanjun Lai ◽  
Xiaoping Qin ◽  
Zhongbin Ye ◽  
Qin Peng ◽  
Yan Zhang ◽  
...  

A novel hyperbranched polymer was synthesized using acrylamide (AM), acrylic acid (AA),N-vinyl-2-pyrrolidone (NVP), and dendrite functional monomer as raw materials by redox initiation system in an aqueous medium. The hyperbranched polymer was characterized by infrared (IR) spectroscopy,1H NMR spectroscopy,13C NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM). The viscosity retention rate of the hyperbranched polymer was 22.89% higher than that of the AM/AA copolymer (HPAM) at 95°C, and the viscosity retention rate was 8.17%, 12.49%, and 13.68% higher than that of HPAM in 18000 mg/L NaCl, 1800 mg/L CaCl2, and 1800 mg/L MgCl2·6H2O brine, respectively. The hyperbranched polymer exhibited higher apparent viscosity (25.2 mPa·s versus 8.1 mPa·s) under 500 s−1shear rate at 80°C. Furthermore, the enhanced oil recovery (EOR) of 1500 mg/L hyperbranched polymer solutions was up to 23.51% by the core flooding test at 80°C.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


2019 ◽  
Vol 177 ◽  
pp. 798-807 ◽  
Author(s):  
Shishi Pang ◽  
Wanfen Pu ◽  
Jianyong Xie ◽  
Yanjie Chu ◽  
Chongyang Wang ◽  
...  

ACS Omega ◽  
2020 ◽  
Vol 5 (28) ◽  
pp. 17521-17530 ◽  
Author(s):  
Marzieh Saadat ◽  
Peichun A. Tsai ◽  
Tsai-Hsing Ho ◽  
Gisle Øye ◽  
Marcin Dudek

2012 ◽  
Vol 524-527 ◽  
pp. 1807-1810
Author(s):  
Hao Chen ◽  
Sheng Lai Yang ◽  
Fang Fang Li ◽  
San Bo Lv ◽  
Zhi Lin Wang

CO2 flooding process has been a proven valuable tertiary enhanced oil recovery (EOR) technique. In this paper, experiment on extractive capacity of CO2 in oil saturated porous media was conducted under reservoir conditions. The main objectives of the study are to evaluate extractive capacity of CO2 in oil saturated natural cores and improve understanding of the CO2 flooding mechanisms, especially in porous media conditions. Experimental results indicated that oil production decreases while GOR increases with extractive time increases. the changes of the color and state of the production oil shows that oil component changes from light to heavy as extractive time increases. In addition, no oil was produced by water flooding after extractive experiment. Based on the experimental results and phenomena, the main conclusion drawn from this study is that under supercritical condition, CO2 has very powerful extractive capacity. And the application of CO2 flooding is recommended for enhancing oil recovery.


Sign in / Sign up

Export Citation Format

Share Document