scholarly journals Energy-Saving Electrospinning with a Concentric Teflon-Core Rod Spinneret to Create Medicated Nanofibers

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2421 ◽  
Author(s):  
Shixiong Kang ◽  
Shicong Hou ◽  
Xunwei Chen ◽  
Deng-Guang Yu ◽  
Lin Wang ◽  
...  

Although electrospun nanofibers are expanding their potential commercial applications in various fields, the issue of energy savings, which are important for cost reduction and technological feasibility, has received little attention to date. In this study, a concentric spinneret with a solid Teflon-core rod was developed to implement an energy-saving electrospinning process. Ketoprofen and polyvinylpyrrolidone (PVP) were used as a model of a poorly water-soluble drug and a filament-forming matrix, respectively, to obtain nanofibrous films via traditional tube-based electrospinning and the proposed solid rod-based electrospinning method. The functional performances of the films were compared through in vitro drug dissolution experiments and ex vivo sublingual drug permeation tests. Results demonstrated that both types of nanofibrous films do not significantly differ in terms of medical applications. However, the new process required only 53.9% of the energy consumed by the traditional method. This achievement was realized by the introduction of several engineering improvements based on applied surface modifications, such as a less energy dispersive air-epoxy resin surface of the spinneret, a free liquid guiding without backward capillary force of the Teflon-core rod, and a smaller fluid–Teflon adhesive force. Other non-conductive materials could be explored to develop new spinnerets offering good engineering control and energy savings to obtain low-cost electrospun polymeric nanofibers.

2020 ◽  
Vol 10 (3) ◽  
pp. 408-417
Author(s):  
Jyotsana R. Madan ◽  
Izharahemad N. Ansari ◽  
Kamal Dua ◽  
Rajendra Awasthi

Purpose : The objective of this work was to formulate casein (CAS) nanocarriers for the dissolution enhancement of poorly water soluble drug celecoxib (CLXB). Methods: The CLXB loaded CAS nanocarriers viz., nanoparticles, reassembled CAS micelles and nanocapsules were prepared using sodium caseinate (SOD-CAS) as a carrier to enhance the solubility of CLXB. The prepared formulations were characterized for particle size, polydispersity index, zeta potential, percentage entrapment efficiency, and surface morphology for the selection of best formulation. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray powder diffraction study was used to for the confirmation of encapsulation of CLXB. Further, in vitro drug dissolution, ex-vivo permeation studies on chicken ileum and stability studies were carried out. Results: The CLXB loaded casein nanoparticles (CNP) (batch A2) showed a particle size diameter 216.1 nm, polydispersity index 0.422 with percentage entrapment efficiency of 90.71% and zeta potential of -24.6 mV. Scanning electron microscopy of suspension confirmed globular shape of CNP. The in vitro release data of optimized batch followed non Fickian diffusion mechanism. The ex vivo permeation studies on chicken ileum of CLXB loaded CNP showed permeation through mucous membrane as compared to pure CLXB. The apparent permeability of best selected freeze dried CLXB loaded CNP (batch A2) was higher and gradually increased from 0.90 mg/cm2 after 10 min to a maximum of 1.95 mg/cm2 over the subsequent 90 min. A higher permeation was recorded at each time point than that of the pure CLXB. Conclusion: The study explored the potential of CAS as a carrier for solubility enhancement of poorly water soluble drugs.


2020 ◽  
Vol 15 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Vikas Jhawat ◽  
Gandhi Sivaraman ◽  
Om Prakash Sunnapu ◽  
Ramya Krishna Nakkala ◽  
...  

Background: Venlafaxine HCl is a selective serotonin reuptake inhibitor which is given in the treatment of depression. The delivery of the drug at a controlled rate can be of great importance for prolonged effect. Objective: The objective was to prepare and optimize the controlled release core in cup matrix tablet of venlafaxine HCl using the combination of hydrophilic and hydrophobic polymers to prolong the effect with rate controlled drug release. Methods: The controlled release core in cup matrix tablets of venlafaxine HCl were prepared using HPMC K5, K4, K15, HCO, IPA, aerosol, magnesium sterate, hydrogenated castor oil and micro crystalline cellulose PVOK-900 using wet granulation technique. Total ten formulations with varying concentrations of polymers were prepared and evaluated for different physicochemical parameters such FTIR analysis for drug identification, In-vitro drug dissolution study was performed to evaluate the amount of drug release in 24 hrs, drug release kinetics study was performed to fit the data in zero order, first order, Hixson–crowell and Higuchi equation to determine the mechanism of drug release and stability studies for 3 months as observed. Results: The results of hardness, thickness, weight variation, friability and drug content study were in acceptable range for all formulations. Based on the In vitro dissolution profile, formulation F-9 was considered to be the optimized extending the release of 98.32% of drug up to 24 hrs. The data fitting study showed that the optimized formulation followed the zero order release rate kinetics and also compared with innovator product (flavix XR) showed better drug release profile. Conclusion: The core-in-cup technology has a potential to control the release rate of freely water soluble drugs for single administration per day by optimization with combined use of hydrophilic and hydrophobic polymers.


2021 ◽  
Vol 1 (2) ◽  
pp. 023-037
Author(s):  
Shailaja D ◽  
Latha K ◽  
Manasa D ◽  
Shirisha A ◽  
Padmavathi R ◽  
...  

Proniosomal technology is a novel solution for poorly soluble drugs. Proniosomes are water-soluble carrier particles which are coated with non-ionic surfactants. Proniosomal gels were prepared by coacervation phase separation method using non-ionic surfactants, lipid carriers and cholesterol as a membrane stabilizer. FTIR compatibility studies revealed that the drug and excipients were compatible. All formulations were evaluated for pH, drug content, extrudability, spreadability, viscosity, in-vitro, ex-vivo, skin irritation and stability studies. Among formulations prepared, F80H1 has shown higher % EE (83.02) and least diffusion through dialysis membrane i.e., 17.68%. With ex-vivo studies, F80H1 formulation has shown highest skin deposition and lower flux of sertaconazole nitrate through the rat skin. F80H1 was selected as final optimized formulation. F80H1 exhibited good stability and SEM studies revealed that the vesicles were spherical in shape. The optimized formulation was found to follow zero order release kinetics and korsmeyer-peppas release mechanism. F80H1 found to be non-irritant and stable from skin irritation and stability studies.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 548 ◽  
Author(s):  
Serena Bertoni ◽  
Beatrice Albertini ◽  
Nadia Passerini

Delivery of poorly water soluble active pharmaceutical ingredients (APIs) by semi-crystalline solid dispersions prepared by spray congealing in form of microparticles (MPs) is an emerging method to increase their oral bioavailability. In this study, solid dispersions based on hydrophilic Gelucires® (Gelucire® 50/13 and Gelucire® 48/16 in different ratio) of three BCS class II model compounds (carbamazepine, CBZ, tolbutamide, TBM, and cinnarizine, CIN) having different physicochemical properties (logP, pKa, Tm) were produced by spray congealing process. The obtained MPs were investigated in terms of morphology, particles size, drug content, solid state properties, drug-carrier interactions, solubility, and dissolution performances. The solid-state characterization showed that the properties of the incorporated drug had a profound influence on the structure of the obtained solid dispersion: CBZ recrystallized in a different polymorphic form, TBM crystallinity was significantly reduced as a result of specific interactions with the carrier, while smaller crystals were observed in case of CIN. The in vitro tests suggested that the drug solubility was mainly influenced by carrier composition, while the drug dissolution behavior was affected by the API solid state in the MPs after the spray congealing process. Among the tested APIs, TBM-Gelucire dispersions showed the highest enhancement in drug dissolution as a result of the reduced drug crystallinity.


2019 ◽  
Vol 16 (6) ◽  
pp. 500-510
Author(s):  
Rong Chai ◽  
Hailing Gao ◽  
Zhihui Ma ◽  
Meng Guo ◽  
Qiang Fu ◽  
...  

Background: Olmesartan medoxomil (OLM) is a promising prodrug hydrolyzed to olmesartan (OL) during absorption from the gastrointestinal tract. OL is a selective angiotensin II receptor antagonist, with high drug resistance and low drug interaction. However, OLM has low solubility and low bioavailability. Therefore, it is extremely urgent to reduce the drug particle size to improve its biological bioavailability. Objective: The aim of the study was to improve the oral bioavailability of poorly water-soluble olmesartan medoxomil (OLM) by using different particle size-reduction strategies. Method: Raw drug material was micronized or nanosized by either jet or wet milling processes, respectively. The particle sizes of the prepared nanocrystals (100-300 nm) and microcrystals (0.5-16 μm) were characterized by DLS, SEM, and TEM techniques. Solid state characterization by XPRD and DSC was used to confirm the crystalline state of OLM after the milling processes. Results: We demonstrated that OLM nanocrystals enhanced solubility and dissolution in the non-sink condition in which high sensitivity was found in purified water. After 1 h, 65.4% of OLM was dissolved from nanocrystals, while microcrystals and OLMETEC® only showed 37.8% and 31.9% of drug dissolution, respectively. In the pharmacokinetic study using Beagle dogs, an increase in Cmax (~2 fold) and AUC (~1.6 fold) was observed after oral administration of OLM nanocrystals when compared to microcrystals and reference tablets, OLMETEC®. In contrast, OLM microcrystals failed to improve the oral bioavailability of the drugs. Conclusion: Particles size reduction to nano-scale by means of nanocrystals technology significantly increased in vitro dissolution rate and in vivo oral bioavailability of OLM.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4591 ◽  
Author(s):  
Pablo Blázquez-Carmona ◽  
Manuel Sanchez-Raya ◽  
Juan Mora-Macías ◽  
Juan Antonio Gómez-Galán ◽  
Jaime Domínguez ◽  
...  

For the monitoring of bone regeneration processes, the instrumentation of the fixation is an increasingly common technique to indirectly measure the evolution of bone formation instead of ex vivo measurements or traditional in vivo techniques, such as X-ray or visual review. A versatile instrumented external fixator capable of adapting to multiple bone regeneration processes was designed, as well as a wireless acquisition system for the data collection. The design and implementation of the overall architecture of such a system is described in this work, including the hardware, firmware, and mechanical components. The measurements are conditioned and subsequently sent to a PC via wireless communication to be in vivo displayed and analyzed using a developed real-time monitoring application. Moreover, a model for the in vivo estimation of the bone callus stiffness from collected data was defined. This model was validated in vitro using elastic springs, reporting promising results with respect to previous equipment, with average errors and uncertainties below 6.7% and 14.04%. The devices were also validated in vivo performing a bone lengthening treatment on a sheep metatarsus. The resulting system allowed the in vivo mechanical characterization of the bone callus during experimentation, providing a low-cost, simple, and highly reliable solution.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 267 ◽  
Author(s):  
Tao Yi ◽  
Jifen Zhang

Self-microemulsifying drug delivery systems (SMEDDS) offer potential for improving the oral bioavailability of poorly water-soluble drugs. However, their susceptibilities during long term storage and in vivo precipitation issues limit their successful commercial application. To overcome these limitations, SMEDDS can be solidified with solid carriers, thus producing solid self-microemulsifying drug delivery systems (S-SMEDDS). In this study, effects of various hydrophilic carriers on structural transitions and in vitro properties of S-SMEDDS were investigated in order to set up in vitro methods for screening out appropriate carriers for S-SMEDDS. Liquid SMEDDS was prepared and characterized using nimodipine as a model drug. The effects of various hydrophilic carriers on internal microstructure and solubilization of SMEDDS were investigated by conductivity measurement and in vitro dispersion test. The results showed that hydrophilic carriers including dextran 40, maltodextrin and PVP K30 seemed to delay the percolation transition of SMEDDS, allowing it to maintain a microstructure that was more conducive to drug dissolution, thus significantly increasing the solubilization of nimodipine in the self-microemulsifying system and decreasing drug precipitation when dispersed in simulated gastric fluid. S-SMEDDS of nimodipine were prepared by using spray drying with hydrophilic carriers. The effects of various hydrophilic carriers on in vitro properties of S-SMEDDS were investigated by using SEM, DSC, PXRD and in vitro dissolution. The results showed that properties of hydrophilic carriers, especially relative molecular mass of carriers, had obvious influences on surface morphologies of S-SMEDDS, reconstitution of microemulsion and physical state of nimodipine in S-SMEDDS. Considering that in vitro properties of S-SMEDDS are closely related to their pharmacokinetic properties in vivo, the simple and economical in vitro evaluation methods established in this paper can be used to screen solid carriers of S-SMEDDS well.


Author(s):  
Sankha Bhattacharya ◽  
Bhupendra G Prajapati

Objective: The main objective of this experiment was to prepare and optimized celecoxib nanoemulgel. This formulation can be used for acuterheumatoid arthritis patients.Methods: Celecoxib is a poorly water soluble drug. We prepared celecoxib nanoemulgel to improve intrinsic solubility of celecoxib and enhancedeeper permeation throughout the skin. After several screening, the combination of acetonitrile, triacetin, campul 908P was considered for oil phase;acconon MC8-2EP as surfactant, and capmul MCM C-10 as a co-surfactant accordingly. As per Box-Behnken surface design model, optimization wasdone for all the 13 formulations.Results: Based on pseudo ternary plot, it was found that 4:1 Smix ratio was optimum and possessed maximum drug solubility. Further, screeningshown, 0.25-0.75% carbopol-940 can be a stable candidate for hydrogel preparation. Prepared nanoemulsions and hydrogels were admixed to preparenanoemulgel. Based on overlay plot, EG14* formulation was consider as optimum one, and various evaluation parameters were performed along withother formulations. Using Franz diffusion cell, in-vitro diffusion studies was performed. Almost all the formulations produces good qualitative drugrelease profile. The EG14* shown 95.50% drug release after 12th hrs with standard Higuchi plot (R2 value 0.9989). The optimum viscosity was foundto be 521±0.81 mPas at 100 rpm. The appearance of the formulations was milky, yellowish white with expectable pH ranged from 5.8 to 6.7. Theoptimized formulation has good spreadability coefficient, good ex-vivo diffusion enhancement factor (3.03) as compare to marketed gel. Mostly, ourformulations have less skin irritation and higher anti-inflammatory activity (92.56% of inhibition of paw edema for EG14*).Conclusion: From the thermodynamic studies, it was confirmed that EG14* maintained excellent stability profile in various heating-cooling cycle,centrifugation, and freeze-thaw cycle condition. Hence, it can be conclude that, our formulation, can be consider for pilot scale up.


2003 ◽  
Vol 58 (3-4) ◽  
pp. 263-267 ◽  
Author(s):  
Gisela Käthe Jooné ◽  
Johan Dekker ◽  
Constance Elizabeth Jansen van Rensburg

A unique process has been developed to convert bituminous coal by controlled wet oxidation followed by base treatment to a water-soluble humate called oxihumate. The effects of oxihumate on the proliferative response of lymphocytes has been studied in vitro and ex vivo. Oxihumate increased the proliferative response of phytohaemagglutinin-stimulated human lymphocytes, from a concentration of 20 μg/ml and upwards. This response was even more striking in the case of lymphocytes from HIV-infected patients and was not limited to the in vitro setting since similar effects were observed ex vivo following administration of a nontoxic dosage of 4 g oxihumate per day to HIV-positive individuals for two weeks. Mechanistic studies revealed that stimulation of the proliferative response of lymphocytes by oxihumate is associated with an increased production of IL-2, as well as expression of the IL-2 receptor in the setting of decreased production of IL-10. Oxihumate therefore holds promise for the treatment of immunocompromized patients.


Sign in / Sign up

Export Citation Format

Share Document