scholarly journals Incorporating MXene into Boron Nitride/Poly(Vinyl Alcohol) Composite Films to Enhance Thermal and Mechanical Properties

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 379
Author(s):  
Seonmin Lee ◽  
Jooheon Kim

Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films.

Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 104 ◽  
Author(s):  
Xin Ge ◽  
Wei-Jie Liang ◽  
Jian-Fang Ge ◽  
Xun-Jun Chen ◽  
Jian-Ye Ji ◽  
...  

Microfibril cellulose (MFC), which is detrimental to soil cultivation and environmental protection, is derived from waste pineapple leaves. Hexagonal boron nitride (h-BN) was modified with polydopamine (PDA)—PDA@h-BN named pBN, and then combined with MFC to prepare a novel hybrid powder. The effect of PDA on h-BN and the binding effect between pBN and MFC were characterized by X-ray photoelectron spectroscopy (XPS), Thermogravimetric (TG), scanning electron microscopy (SEM), and Fourier Transform-Infrared (FT-IR). Poly (vinyl alcohol) (PVA) was used as an eco-friendly polymeric matrix to prepare a pBN-MFC-PVA composite film. The mechanical strength, hydrophobicity, and thermal conductivity of the film were studied and the results confirmed that h-BN was chemically modified with PDA and was uniformly distributed along the MFC. The thermal conductivity of the pBN-MFC-PVA composite film increased with the addition of a pBN-MFC novel powder. MFC acted as “guides” to mitigate the h-BN agglomerate. In addition to the possible usage in the pBN-MFC-PVA composite film itself, the pBN-MFC hybrid powder may be a potential filler candidate for manufacturing thermal interface materials and wearable devices or protective materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2544
Author(s):  
Cenkai Xu ◽  
Chengmei Wei ◽  
Qihan Li ◽  
Zihan Li ◽  
Zongxi Zhang ◽  
...  

Dielectric materials with excellent thermally conductive and mechanical properties can enable disruptive performance enhancement in the areas of advanced electronics and high-power devices. However, simultaneously achieving high thermal conductivity and mechanical strength for a single material remains a challenge. Herein, we report a new strategy for preparing mechanically strong and thermally conductive composite films by combining aramid nanofibers (ANFs) with graphene oxide (GO) and edge-hydroxylated boron nitride nanosheet (BNNS-OH) via a vacuum-assisted filtration and hot-pressing technique. The obtained ANF/GO/BNNS film exhibits an ultrahigh in-plane thermal conductivity of 33.4 Wm−1K−1 at the loading of 10 wt.% GO and 50 wt.% BNNS-OH, which is 2080% higher than that of pure ANF film. The exceptional thermal conductivity results from the biomimetic nacreous “brick-and-mortar” layered structure of the composite film, in which favorable contacting and overlapping between the BNNS-OH and GO is generated, resulting in tightly packed thermal conduction networks. In addition, an outstanding tensile strength of 93.3 MPa is achieved for the composite film, owing to the special biomimetic nacreous structure as well as the strong π−π interactions and extensive hydrogen bonding between the GO and ANFs framework. Meanwhile, the obtained composite film displays excellent thermostability (Td = 555 °C, Tg > 400 °C) and electrical insulation (4.2 × 1014 Ω·cm). We believe that these findings shed some light on the design and fabrication of multifunctional materials for thermal management applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


2011 ◽  
Vol 399-401 ◽  
pp. 381-384
Author(s):  
Chun Guang Li ◽  
Bin Guo Zheng ◽  
Wei Gong Peng ◽  
Wei Tian ◽  
Rui Zhang

The biodegradable composite films were prepared from bagasse microcrystalline cellulose as filler and poly(vinyl alcohol)(PVA) as polymeric matrix. The crystallinity, the tensile properties and the thermal properties of the composites were tested. Bagasse microcrystalline cellulose was distributed in PVA films as the crystalline state. The results show that the tensile properties and thermal properties were improved with the addition of bagasse microcrystalline cellulose. When bagasse microcrystalline cellulose mass fraction was 5%, both temperature of initial decomposition and maximum weight loss rate of composite film were raised by 11.71°C and 36.86°C, and the tensile strength increased by 17.88%, and the elongation at break increased by 36.62% compared to those of pure PVA.


Sign in / Sign up

Export Citation Format

Share Document