scholarly journals Simultaneous Electrospinning and Electrospraying for the Preparation of a Precursor Membrane Containing Hydrothermally Generated Biochar Particles to Produce the Value-Added Product of Carbon Nanofibrous Felt

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 676
Author(s):  
Xianfu Li ◽  
Tao Xu ◽  
Zhipeng Liang ◽  
Vinod S. Amar ◽  
Runzhou Huang ◽  
...  

Biochar is a byproduct generated from the hydrothermal liquefaction of biomass, such as corn stover, in an anaerobic environment. This work aims to convert biochar into a value-added product of carbon nanofibrous felt. First, the biochar-containing precursor membrane was prepared from simultaneous electrospinning and electrospraying. After thermal stabilization in air and carbonization in argon, the obtained precursor membrane was converted into a mechanically flexible and robust carbon nanofibrous felt. Electrochemical results revealed that the biochar-derived carbon nanofibrous felt might be a good candidate as a supercapacitor electrode with a good rate capability and high kinetic performance.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yitong Chen ◽  
Xiangjun Lu ◽  
Bo Gao

A novel solid-state method has been developed for synthesizing nickel oxide (NiO)/carbon nanotubes (CNTs) composite using an ionic liquid (IL, 1-butyl-3-methylimidazolium chloride) as the reaction medium. Ultraviolet-visible (UV-vis) absorbance spectroscopy, infrared spectroscopy (IR), and scanning electron microscopy (SEM) were employed to investigate the structure, morphology, and formation mechanism of the synthesized sample. The results demonstrated that the IL is effective for dispersing CNTs, which allows the tethering of nickel (II) ions onto the surfaces of the CNTs and facilitates the subsequent chemical deposition of NiO to obtain the NiO/CNTs composite. The electrochemical properties of the composite were determined using cyclic voltammetry and galvanostatic charge/discharge measurements in 6 M KOH. Because of its unique structure, the prepared NiO/CNTs electrode exhibited good capacitive behavior and cyclability. The high specific capacitance (521 F g−1) and good rate capability (91% capacity retention at 0.5 A g−1) of the NiO/CNTs composite enable its use as a practical supercapacitor electrode material.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 379 ◽  
Author(s):  
Ekaterina Ovsyannikova ◽  
Andrea Kruse ◽  
Gero C. Becker

Microalgae (Spirulina) and primary sewage sludge are considerable feedstocks for future fuel-producing biorefinery. These feedstocks have either a high fuel production potential (algae) or a particularly high appearance as waste (sludge). Both feedstocks bring high loads of nutrients (P, N) that must be addressed in sound biorefinery concepts that primarily target specific hydrocarbons, such as liquid fuels. Hydrothermal liquefaction (HTL), which produces bio-crude oil that is ready for catalytic upgrading (e.g., for jet fuel), is a useful starting point for such an approach. As technology advances from small-scale batches to pilot-scale continuous operations, the aspect of nutrient recovery must be reconsidered. This research presents a full analysis of relevant nutrient flows between the product phases of HTL for the two aforementioned feedstocks on the basis of pilot-scale data. From a partial experimentally derived mass balance, initial strategies for recovering the most relevant nutrients (P, N) were developed and proofed in laboratory-scale. The experimental and theoretical data from the pilot and laboratory scales are combined to present the proof of concept and provide the first mass balances of an HTL-based biorefinery modular operation for producing fertilizer (struvite) as a value-added product.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950026 ◽  
Author(s):  
Lili Wang ◽  
Yanxia Huang ◽  
Xiaoshan Li ◽  
Hang Ma ◽  
Chenghang You ◽  
...  

The paper reports a kind of NiCo2O4 material with urchin-like morphology. This material was prepared using a facile strategy of hydrothermal process followed by calcinations, and exhibits an excellent electrochemical performance. For example, it delivers a specific capacitance high up to 1167[Formula: see text]Fg[Formula: see text] at 1[Formula: see text]Ag[Formula: see text] and still retains a value of 1095[Formula: see text]Fg[Formula: see text] at 10[Formula: see text]Ag[Formula: see text], showing a good rate capability; after suffering from 3000 cycles at 10[Formula: see text]A[Formula: see text]g[Formula: see text], the specific capacitance has only a decay of 12%, presenting a good cycling stability.


2018 ◽  
Author(s):  
Younghwan Cha ◽  
Jung-In Lee ◽  
Panpan Dong ◽  
Xiahui Zhang ◽  
Min-Kyu Song

A novel strategy for the oxidation of Mg-based intermetallic compounds using CO<sub>2</sub> as an oxidizing agent was realized via simple thermal treatment, called ‘CO2-thermic Oxidation Process (CO-OP)’. Furthermore, as a value-added application, electrochemical properties of one of the reaction products (carbon-coated macroporous silicon) was evaluated. Considering the facile tunability of the chemical/physical properties of Mg-based intermetallics, we believe that this route can provide a simple and versatile platform for functional energy materials synthesis as well as CO<sub>2</sub> chemical utilization in an environment-friendly and sustainable way.


Author(s):  
Xiao-Man Cao ◽  
Zhi-Jia Sun ◽  
Zheng-Bo Han

A novel core–shell hetero-structured electrode (NF@CoO@Co/N–C) is designed and synthesized via a “anchor-etch-calcine” process for boosting electrochemical capacitor behaviour. The unique structure endows NF@CoO@Co/N–C with ultrahigh areal capacitances and good rate capability.


Sign in / Sign up

Export Citation Format

Share Document