scholarly journals An Investigation on the Thermally Induced Compatibilization of SBR and α-Methylstyrene/Styrene Resin

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1267
Author(s):  
Arnaud Wolf ◽  
João Paulo Cosas Fernandes ◽  
Chuanyu Yan ◽  
Reiner Dieden ◽  
Laurent Poorters ◽  
...  

The miscibility between two polymers such as rubbers and performance resins is crucial to achieve given targeted properties in terms of tire performances. To this aim, α-methylstyrene/styrene resin (poly(αMSt-co-St)) are used to modify the viscoelastic behavior of rubbers and to fulfill the requirements of the final applications. The initial aim of this work was to understand the influence of poly(αMSt-co-St) resins blended at different concentrations in a commercial styrene-butadiene rubber (SBR). Interestingly, while studying the viscoelastic properties of SBR blends with poly(αMSt-co-St), crosslinking of the rubber was observed under conditions where it was not expected to happen. Surprisingly, after the crosslinking reactions, the poly(αMSt-co-St) resin was irreversibly miscible with SBR at concentrations far above its immiscibility threshold. A detailed investigation involving characterization technics including solid state nuclear magnetic resonance led to the conclusion that poly(αMSt-co-St) is depolymerizing under heating and can graft onto the chains of SBR. It results in an irreversible compatibilization mechanism between the rubber and the resin.

2016 ◽  
Vol 700 ◽  
pp. 238-246 ◽  
Author(s):  
Dewi Sri Jayanti ◽  
Ramadhansyah Putra Jaya ◽  
Siti Aspalaili Mohamd Sharif ◽  
Norhidayah Abdul Hassan ◽  
Siti Nur Amiera Jeffry ◽  
...  

This study investigated the effects of adding various percentages of styrene–butadiene rubber (SBR) on the engineering properties and performance of asphaltic concrete. SBR was added into the mixture at 0%, 1%, 3%, and 5% on a mass-to-mass basis. Conventional bitumen used in this study was 80/100 PEN. The performances of SBR on the asphalt mixture properties were evaluated based on Marshall Stability, abrasion loss, resilient modulus, and dynamic creep test. Results indicated an improvement in the engineering properties and performance with the addition of SBR content. For instance, stability increased by 18.8% as the SBR content increased from 0% to 5%. Dynamic creep stiffness also increased by 46.2%. Similarly, the resilient modulus was also found to increase by approximately 84.6%.


2007 ◽  
Vol 80 (4) ◽  
pp. 672-689 ◽  
Author(s):  
Ranimol Stephen ◽  
Sabu Thomas ◽  
K. V. S. N. Raju ◽  
Siby Varghese ◽  
Kuruvilla Joseph ◽  
...  

Abstract The viscoelastic and dielectric properties of nano structured layered silicates reinforced natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends have been analyzed. The viscoelastic properties such as storage modulus, loss modulus, damping behavior and glass transition temperature of nano filled latices have been investigated. Upon the addition of filler, the storage modulus of nanocomposites was found to increase due to the enhancement in stiffness of the material. Due to the restricted mobility of polymer chain segments, the damping values decreased as a function of filler loading. An investigation of the viscoelastic properties revealed that there was a strong interaction between the polymer and the filler. Latex nanocomposites was characterized by X-ray diffraction technique. The enhanced d values indicated the intercalation of polymer chain into the layers of silicates. The dielectric properties of nanocomposites have been investigated as a function of frequency in the range of 50Hz–100KHz. The effect of frequency on dielectric permittivity (Ε′), dielectric loss (Ε″), dissipation factor (tan δ) and volume resistivity (ρv) of latex nanocomposite have been measured under alternating current. The dielectric permittivity of the samples was found to be higher upon the incorporation of nano fillers. The volume resistivity decreased due to the enhanced conductivity of filled samples.


2019 ◽  
Vol 138 (4) ◽  
pp. 2409-2417 ◽  
Author(s):  
Mateusz Imiela ◽  
Rafał Anyszka ◽  
Dariusz Mariusz Bieliński ◽  
Marcin Masłowski ◽  
Zbigniew Pędzich ◽  
...  

2003 ◽  
Vol 88 (11) ◽  
pp. 2639-2648 ◽  
Author(s):  
Ranimol Stephen ◽  
K. V. S. N. Raju ◽  
Sobha V. Nair ◽  
Siby Varghese ◽  
Zachariah Oommen ◽  
...  

2000 ◽  
Vol 73 (4) ◽  
pp. 731-742 ◽  
Author(s):  
Laurand Lewandowski ◽  
Morgan S. Sibbald ◽  
Ed Johnson ◽  
Michael P. Mallamaci

Abstract Emulsion styrene—butadiene rubber (ESBR) has been the workhorse of the tire industry since World War II. With the development of solution polymers, ESBR has seen a steady decrease in its use in tire applications. A novel ESBR has been developed which imparts some of the rheological behavior previously only observed in solution polymers. This new ESBR was prepared by blending a high molecular weight elastomer with a low molecular weight elastomer, each having a unique styrene-butadiene composition. A two-phase co-continuous morphology was observed by scanning probe microscopy when the bound styrene difference between the two components was greater than 18%, consistent with the two glass transition temperatures measured by thermal analysis. Blending also served to reduce the amount of very high molecular weight material (> 107 g/mol) readily observed in 1502- and 1712-type polymers by thermal field flow fractionation (ThFFF). ThFFF was found to be superior to size exclusion chromatography for fully characterizing the molecular weight and molecular weight distribution of the polymers. Time—temperature superposition was performed to characterize the viscoelastic behavior in the rubbery plateau and terminal zones. The ESBR blends showed a cross-over in the terminal flow region that was not observed in 1502- and 1712-type polymers.


2016 ◽  
Vol 27 (6) ◽  
pp. 830-840 ◽  
Author(s):  
Yizhong Chen ◽  
Yong Lin ◽  
Yuanfang Luo ◽  
Demin Jia ◽  
Lan Liu

1999 ◽  
Vol 72 (2) ◽  
pp. 318-333 ◽  
Author(s):  
Fred Ignatz-Hoover ◽  
Alan R. Katritzky ◽  
Victor S. Lobanov ◽  
Mati Karelson

Abstract Vulcanization of styrene-butadiene rubber, as accelerated by a series of sulfenamides and sulfenimides prepared from various aromatic heterocyclic thiols and various aliphatic amines, was studied using the curemeter under isothermal conditions. Further studies using MOPAC AM1 semiempirical quantum mechanical calculations and CODESSA QSAR software yielded excellent correlations of molecular descriptors of accelerators or accelerator thiolate zinc complexes to the onset of cure and maximum rate of vulcanization. The QSAR results support previously proposed mechanisms describing the origin of scorch delay for the delayed action, fast curing sulfenamide accelerators. In addition, the results support a carbanionic concerted mechanism for the sulfurization and crosslinking reactions.


Sign in / Sign up

Export Citation Format

Share Document