scholarly journals Understanding the Reinforcement of Graphene in Poly(Ether Ether Ketone)/Carbon Fibre Laminates

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2440
Author(s):  
Araceli Flores ◽  
Susana Quiles-Díaz ◽  
Patricia Enrique-Jimenez ◽  
Aránzazu Martínez-Gómez ◽  
Marián A. Gómez-Fatou ◽  
...  

PEEK appears as an excellent candidate to substitute epoxy resins in carbon fibre laminates for high-performance aeronautical applications. The optimization of the properties and, in particular, of the transition region between the fibres and the matrix appear as a major issue prior to serial production. Graphene, modified with two compatibilizers, has been incorporated in the polymer layer with the purpose of imparting additional functionalities and enhancing the matrix-fibre interaction. It is found that both carbon fibres and modified graphene significantly influence the crystallization behaviour and smaller, and/or more imperfect crystals appear while the degree of crystallinity decreases. Despite this, nanoindentation studies show that the PEEK layer exhibits significant modulus improvements (≈30%) for 5 wt.% of graphene. Most importantly, the study of the local mechanical properties by nanoindentation mapping allows the identification of remarkably high modulus values close to the carbon fibre front. Such a relevant mechanical enhancement can be associated with the accumulation of graphene platelets at the polymer–fibre boundary, as revealed by electron microscopy studies. The results offer a feasible route for interlaminar mechanical improvement based on the higher density of graphene platelets at the fibre front that should promote interfacial interactions. Concerning electrical conductivity, a large anisotropy was found for all laminates, and values in the range ~10−4 S/cm were found for the through-thickness arrangement as a consequence of the good consolidation of the laminates.

Author(s):  
Tg Mahizatulazwa Tg Kamaruddin ◽  
Liew Kong Yong ◽  
Mohd Ridzuan Noordin

The effects of reinforcing Poly ether etherketone (PEEK) with alumina nanofiber have been studied. The nano-composites were prepared by first dispersing the fibre in solvent and then undertaking the synthesis of PEEK. Nanocomposite materials with 1wt.%, 2.5wt.% and 5wt.% of alumina nanofiber have been prepared successfully by dispersing the alumina nanofiber in Sulfolane as solvent and upon sonication for 30 minutes. Transmission electron microscopy and scanning electron micrographs indicated excellent dispersion and interactions between PEEK matrixes with the added alumina nanofibers. Differential scanning calorimeter shows changes in melting and crystallization point and degree of crystallinity for 1wt.% nanocomposites. The result also indicated that alumina nanofiber serves as nucleating agents in PEEK nanocomposites. The X-ray diffractogram data indicated that the crystallinity of the PEEK nanocomposites was highest for 1wt.% alumina nanofiber. The thermogravimetry analysis, shows that thermal stability for alumina nanofiber/PEEK nano-composites was enhanced compared to that of the pure PEEK.


2020 ◽  
Vol 54 (29) ◽  
pp. 4709-4722
Author(s):  
Jennifer Vinodhini ◽  
Mohan Kumar Pitchan ◽  
Shantanu Bhowmik ◽  
Gion Andrea Barandun ◽  
Pierre Jousset

This study investigates the effect of dispersion of nanofiller reinforcement high performance polymer matrix to enhance the thermo-mechanical properties for bearing application. Polyetheretherketone (PEEK) matrix is reinforced with acid fucntionalized multiwalled carbon nanotubes ( f-MWCNTs) and similar matrix was then reinforced with nano tungsten carbide (nano WC) to comparatively present their mechanical, thermal and morphological properties. The Nanocomposites were prepared via melt compounding method followed by injection moulding technique. The PEEK/ f-MWCNT s nanocomposite exhibited better property enhancement than the PEEK/nano WC. Spectroscopical analysis confirmed the effectiveness of improved interfacial adhesion between PEEK and f-MWCNTs. Transmission Electron Microscope (TEM) micrograph depicted improved dispersion of f-MWCNTs in PEEK matrix than that of nano WC. Due to improved interfacial interaction between f-MWCNT s and PEEK, this resulting nanocomposite showed better mechanical, thermal and morphological properties than PEEK/nano WC. Due to ceramic nature of nano WC and higher density difference the agglomeration of particles occurred leading to lower properties.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ankang Liu ◽  
Bing Wang ◽  
Fei Li

Purpose This paper aims to study the effect of elevated temperature on the compression behaviour of carbon fibre polyphenylene sulphide (CF/PPS) laminates notched and unnotched specimens made by film stacking method (FSM). Design/methodology/approach The surface of CF was coated with a silane coupling agent to form an effective transition layer with PPS, so as to enhance the interfacial interaction between CF and PPS. Considering the influence of fabrication pressure, forming temperature and cooling rate on the properties of laminates to obtain a reasonable preparation process. Conducting a compressive experiment of notched and unnotched specimens at different temperatures, which failure modes were examined by scanning electron microscope and stereo microscope. Findings The experimental observations highlight that with the increase of temperature, the transition failure mode from fibre broken to kink-band appeared in unnotched specimens, which were closely attributed to the matrix state. The notched specimens appeared more complex failure mode, which can be attributed to the joint effect of temperature and opening hole. Research implications A simple way of FSM for composite material laminates has been developed by using woven CF and PPS films. Originality/value The outcome of this study will help to understand the compression response mechanism of composite materials made by FSM at different temperature.


2017 ◽  
Vol 66 (12) ◽  
pp. 1731-1736 ◽  
Author(s):  
Marianna Rinaldi ◽  
Debora Puglia ◽  
Franco Dominici ◽  
Valeria Cherubini ◽  
Luigi Torre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document