large anisotropy
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 20)

H-INDEX

25
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5283
Author(s):  
Sunseng Pyon ◽  
Soichi Taya ◽  
Yuto Kobayashi ◽  
Ayumu Takahashi ◽  
Wenjie Li ◽  
...  

We report the critical current density (Jc) and vortex pinning properties in single crystals of a novel iron-based superconductor (IBS) KCa2Fe4As4F2 with large Jc in the pristine state, before and after introduction of artificial defects by swift-particle irradiation. The effects of 2.6 GeV U and 3 MeV proton irradiations in KCa2Fe4As4F2 single crystals on transition temperature Tc and Jc, including its dose dependence, are systematically studied. Jc~8 MA/cm2 under a self-field at 2 K in the pristine crystal is strongly enhanced up to 19.4 and 17.5 MA/cm2 by irradiation of 2.6 GeV U-ions and 3 MeV protons, respectively. Suppression of Tc and dose dependence of Jc in KCa2Fe4As4F2 is different from that in a representative IBS of (Ba,K)Fe2As2, which can be explained by considering the presence of embedded defects in pristine KCa2Fe4As4F2. The vortex dynamics in the pristine and proton irradiated KCa2Fe4As4F2 single crystals are also investigated from the analyses of the field dependence of Jc and the normalized magnetic relaxation rate. In addition to the contribution of embedded defects, weak collective pinning is considered for comprehensive analyses. Vortex dynamics in KCa2Fe4As4F2 is similar to those in (Ba,K)Fe2As2 to some extent, and different from that in anisotropic Li0.8Fe0.2OHFeSe. Large anisotropy, due to the presence of insulating blocking layers in KCa2Fe4As4F2, which leads to much lower irreversibility field (Hirr) compared with 122-type IBSs, strongly affect the vortex dynamics.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2440
Author(s):  
Araceli Flores ◽  
Susana Quiles-Díaz ◽  
Patricia Enrique-Jimenez ◽  
Aránzazu Martínez-Gómez ◽  
Marián A. Gómez-Fatou ◽  
...  

PEEK appears as an excellent candidate to substitute epoxy resins in carbon fibre laminates for high-performance aeronautical applications. The optimization of the properties and, in particular, of the transition region between the fibres and the matrix appear as a major issue prior to serial production. Graphene, modified with two compatibilizers, has been incorporated in the polymer layer with the purpose of imparting additional functionalities and enhancing the matrix-fibre interaction. It is found that both carbon fibres and modified graphene significantly influence the crystallization behaviour and smaller, and/or more imperfect crystals appear while the degree of crystallinity decreases. Despite this, nanoindentation studies show that the PEEK layer exhibits significant modulus improvements (≈30%) for 5 wt.% of graphene. Most importantly, the study of the local mechanical properties by nanoindentation mapping allows the identification of remarkably high modulus values close to the carbon fibre front. Such a relevant mechanical enhancement can be associated with the accumulation of graphene platelets at the polymer–fibre boundary, as revealed by electron microscopy studies. The results offer a feasible route for interlaminar mechanical improvement based on the higher density of graphene platelets at the fibre front that should promote interfacial interactions. Concerning electrical conductivity, a large anisotropy was found for all laminates, and values in the range ~10−4 S/cm were found for the through-thickness arrangement as a consequence of the good consolidation of the laminates.


2021 ◽  
pp. 2160003
Author(s):  
Ashura N. Isaeva ◽  
Vitaly Yu. Topolov

Piezoelectric properties and related figures of merit are studied in novel 1–3-type composites based on ferroelectric domain-engineered lead-free single crystal with the relatively large longitudinal piezoelectric coefficient [Formula: see text]. Relationships between the piezoelectric properties and the set of figures of merit are analyzed for the 1–3 and 1–3–0 composites that contain the same single-crystal and polymer components. For a composite characterized by 1–3–0 connectivity, an influence of a porous piezo-passive matrix on the figures of merit and their volume-fraction behavior is considered additionally. A large anisotropy of figures of merit is observed in the 1–3–0 composite with specific porous matrices. A diagram is put forward to show volume-fraction regions of the large anisotropy of figures of merit of the studied 1–3–0 composite. Due to large figures of merit and their considerable anisotropy, the studied lead-free composites can be applied in piezoelectric energy-harvesting systems, sensors, transducers, and so on.


Author(s):  
Shouvik Sadhukhan ◽  
Alokananda Kar

In this paper we will consider the cosmic fluid to be dissipating i.e it has both bulk and shearing viscosity. We propose the Hamiltonian formalism of Bianchi type 1 cosmological model for cosmic fluid which is dissipating i.e it has both shearing and bulk viscosity. We have considered both the equation of state parameter ω and the cosmological constant Λ as the function of volume V(t) which is defined by the product of three scale factors of the Bianchi type 1 line element. We propose a Lagrangian for the anisotropic Bianchi type-1 model in view of a variable mass moving in a variable potential . We can decompose the anisotropic expansion of Bianchi type 1 in terms of expansion and shearing motion by Lagrangian mechanism. We have considered a canonical transformation from expanding scale factor to scalar field ø which helps us to give the proper classical definition of that scalar field in terms of scale factors of the mentioned model. By this transformation we can express the mass to be moving in a scalar potential field. This definition helps us to explain the nature of expansion of universe during cosmological inflation. We have used large anisotropy(as in the cases of Bianchi models) and proved that cosmic inflation is not possible in such large anisotropy. Therefore we can conclude that the extent of anisotropy is less in case of our universe. Otherwise the inflation theory which explained the limitations of Big Bang cannot be resolved. In the case of bulk and shearing viscous fluid we get the solution of damped harmonic oscillator after the cosmological inflation.Part I contains the calculations of bulk viscous fluids and Part II contains the calculations of bulk and shearing viscous fluid.At the end we have also provided the relation of shearing and expansion.Part III will give the approximation of low viscosity to solve the viscous fluid problem.


Author(s):  
Alokananda Kar ◽  
Shouvik Sadhukhan

We propose the Hamiltonian formalism of Bianchi type 1 cosmological model for perfect fluid. We have considered both the equation of state parameter ω and the cosmological constant Λ as the function of volume V(t) which is defined by the product of three scale factors of the Bianchi type 1 line element. We propose a Lagrangian for the anisotropic Bianchi type-1 model in view of a variable mass moving in a variable potential . We can decompose the anisotropic expansion in terms of expansion and shearing motion by Lagrangian mechanism. We have considered a canonical transformation from expanding scale factor to scalar field ø which helps us to give the proper classical definition of that scalar field in terms of scale factors of the mentioned model. This definition helps us to explain the cosmological inflation. We have used large anisotropy(as in the cases of Bianchi models) and proved that cosmic inflation is not possible in such large anisotropy. Therefore we can conclude that the extent of anisotropy is less in case of our universe. Otherwise the inflation theory which explained the limitations of Big Bang cannot be resolved.Part II is contained with some analysis of the lagrangian ; derived in Part I ; on the quintessence model.


2020 ◽  
pp. 33-42
Author(s):  
Łukasz Rawicki ◽  
Jacek Słania

Welding is considered as a “Special Process”, which means that its quality cannot be readily verified and its successful application requires specialist management, personnel and procedures. It is important to conduct proper testing of the welded joints, including volumetric testing. In this case there are conducted ultrasonic testing, which enable detecting volumetric discontinuities. Ultrasonic testing meets many problems while testing joints with large anisotropy. The problems are caused by the physical phenomena, e.g. transformation, dispersion and absorption of the wave. It is connected with the structure of the material, which cause different propagation of the ultrasonic beam. The article presents the review of the factors affecting the quality of ultrasonic testing.


2020 ◽  
Vol 32 (33) ◽  
pp. 335804 ◽  
Author(s):  
Hongqing Tu ◽  
Ji Wang ◽  
Zhaocong Huang ◽  
Ya Zhai ◽  
Zhendong Zhu ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 463-467
Author(s):  
Soo-Young Kang ◽  
No-Won Park ◽  
Won-Yong Lee ◽  
Min-Sung Kang ◽  
Gil-Sung Kim ◽  
...  

Nanoscale superlattice thin films generally exhibit larger phonon and electron scattering at the interface in the direction of the cross-plane of the samples. Therefore, it is very important to further detailed study of especially phonon transport of the superlattice films. Here, we report temperature dependent thermal conductivity anisotropy in phonon transport of Bi2 Te3 /Bi0.5 Sb1.5 Te3 superlattice thin films at 200–500 K. Thermal conductivity of these thin films for in- and cross-plane thermal conductivities were determined to be approximately 0.74 and 0.4 W m–1 K–1 at 200–500 K, respectively, clearly indicating ∼185% suppression in- and cross-plane thermal conductivities of the superlattice thin films with a large anisotropic behavior. Such large anisotropy in the thermal conductivity can be attributed to enhanced phonon scattering occurring at the interface of the Bi2Te3 and Bi0.5Sb1.5Te3 layer.


2020 ◽  
Vol 53 (11) ◽  
pp. 115004
Author(s):  
Long Yang ◽  
Yu Yan ◽  
Yequan Chen ◽  
Yiyi Chen ◽  
Bo Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document