scholarly journals Impact Toughness of Hybrid Carbon Fiber-PLA/ABS Laminar Composite Produced through Fused Filament Fabrication

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3057
Author(s):  
Hafiz Ahmed ◽  
Ghulam Hussain ◽  
Sohail Gohar ◽  
Aaqib Ali ◽  
Mohammed Alkahtani

Nowadays, the components of carbon fiber-reinforced polymer composites (an important material) are directly produced with 3D printing technology, especially Fused Filament Fabrication (FFF). However, such components suffer from poor toughness. The main aim of this research is to overcome this drawback by introducing an idea of laying down a high toughness material on the 3D-printed carbon fiber-reinforced polymer composite sheet, thereby making a hybrid composite of laminar structure. To ascertain this idea, in the present study, a carbon-reinforced Polylactic Acid (C-PLA) composite sheet was initially 3D printed through FFF technology, which was then laid upon with the Acrylonitrile Butadiene Styrene (ABS), named as C-PLA/ABS hybrid laminar composite, in an attempt to increase its impact toughness. The hybrid composite was fabricated by varying different 3D printing parameters and was then subjected to impact testing. The results revealed that toughness increased by employing higher layer thickness and clad ratio, while it decreased by increasing the fill density, but remained unaffected due to any change in the raster angle. The highest impact toughness (23,465.6 kJ/m2) was achieved when fabrication was performed employing layer thickness of 0.5 mm, clad ratio of 1, fill density of 40%. As a result of laying up ABS sheet on C-PLA sheet, the toughness of resulting structure increased greatly (280 to 365%) as compared to the equivalent C-PLA structure, as expected. Two different types of distinct failures were observed during impact testing. In type A, both laminates fractured simultaneously without any delamination as a hammer hit the sample. In type B, the failure initiated with fracturing of C-PLA sheet followed by interfacial delamination at the boundary walls. The SEM analysis of fractured surfaces revealed two types of pores in the C-PLA lamina, while only one type in the ABS lamina. Further, there was no interlayer cracking in the C-PLA lamina contrary to the ABS lamina, thereby indicating greater interlayer adhesion in the C-PLA lamina.

Author(s):  
Pedram Parandoush ◽  
Timothy Deines ◽  
Dong Lin ◽  
Hao Zhang ◽  
Chang Ye

Abstract 3D printing technology could be extremely beneficial for increasing the flexibly and reducing the cost of carbon fiber reinforced polymer composite (CFRP) production. However, this technology suffers from poor surface quality and uncertain engineering quality. Mechanical finishing processes could concurrently solve these surface issues with the 3D printed composites components. Herein, a mechanical finishing process for 3D printed CFRP composites via CNC milling is proposed to improve the surface quality of two 3D printing methods, namely fused deposition modeling (FDM) and laser assisted-laminated object manufacturing (LA-LOM). The 3D printed CFRP structures fabricated via both methods comprise of continuous carbon fiber reinforcement. The surface roughness and surface morphology of the original unfinished and finished surfaces with various cutting depths are extensively studied to investigate the feasibility of the proposed finishing technique. The surface morphology of the surfaces parallel and perpendicular to the 3D printed layers is the main focus of this work. After the CNC finishing process, the surface roughness of the 3D printed CFRP composites is improved by 70% and 60% for FDM and LA-LOM components, respectively. A smooth, consistent, and predictable surface morphology is achieved for various cutting depths demonstrating a substantial improvement over the original 3D printed surfaces.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Sign in / Sign up

Export Citation Format

Share Document