scholarly journals A Review of the Effects of Collagen Treatment in Clinical Studies

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3868
Author(s):  
Hsiuying Wang

Collagen, an abundant extracellular matrix protein, has been found to have a lot of pharmaceuticals, medicine, food, and cosmetics applications. Increased knowledge of collagen sources, extraction techniques, structure, and properties in the last decades has helped develop more collagen-based products and tissue engineering biomaterials. Collagen products have been playing an important role in benefiting the health of the human body, especially for aging people. In this paper, the effects of collagen treatment in different clinical studies including skin regeneration, bone defects, sarcopenia, wound healing, dental therapy, gastroesophageal reflux, osteoarthritis, and rheumatoid arthritis have been reviewed. The collagen treatments were significant in these clinical studies. In addition, the associations between these diseases were discussed. The comorbidity of these diseases might be closely related to collagen deficiency, and collagen treatment might be a good choice when a patient has more than one of these diseases, including the coronavirus disease 2019 (COVID-19). It concludes that collagen-based medication is useful in treating comorbid diseases and preventing complications.

Author(s):  
Solaleh Miar ◽  
Joseph Pearson ◽  
Sergio Montelongo ◽  
Rogelio Zamilpa ◽  
Alejandro M. Betancourt ◽  
...  

2013 ◽  
Vol 72 (Suppl 3) ◽  
pp. A165.3-A165
Author(s):  
N. Pavek ◽  
M. Pavkova Goldbergova ◽  
J. Lipkova ◽  
P. Nemec ◽  
J. Gatterova ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 421-422
Author(s):  
Ganka Nikolova ◽  
Christian O. Twiss ◽  
Hane Lee ◽  
Nelson Stanley ◽  
Janet Sinsheimer ◽  
...  

2015 ◽  
Vol 11 (999) ◽  
pp. 1-1
Author(s):  
Maurizio Benucci ◽  
Francesca Meacci ◽  
Mariangela Manfredi ◽  
Francesca Gobbi ◽  
Maria Infantino ◽  
...  

Author(s):  
Aniel Moya-Torres ◽  
Monika Gupta ◽  
Fabian Heide ◽  
Natalie Krahn ◽  
Scott Legare ◽  
...  

Abstract The production of recombinant proteins for functional and biophysical studies, especially in the field of structural determination, still represents a challenge as high quality and quantities are needed to adequately perform experiments. This is in part solved by optimizing protein constructs and expression conditions to maximize the yields in regular flask expression systems. Still, work flow and effort can be substantial with no guarantee to obtain improvements. This study presents a combination of workflows that can be used to dramatically increase protein production and improve processing results, specifically for the extracellular matrix protein Netrin-1. This proteoglycan is an axon guidance cue which interacts with various receptors to initiate downstream signaling cascades affecting cell differentiation, proliferation, metabolism, and survival. We were able to produce large glycoprotein quantities in mammalian cells, which were engineered for protein overexpression and secretion into the media using the controlled environment provided by a hollow fiber bioreactor. Close monitoring of the internal bioreactor conditions allowed for stable production over an extended period of time. In addition to this, Netrin-1 concentrations were monitored in expression media through biolayer interferometry which allowed us to increase Netrin-1 media concentrations tenfold over our current flask systems while preserving excellent protein quality and in solution behavior. Our particular combination of genetic engineering, cell culture system, protein purification, and biophysical characterization permitted us to establish an efficient and continuous production of high-quality protein suitable for structural biology studies that can be translated to various biological systems. Key points • Hollow fiber bioreactor produces substantial yields of homogenous Netrin-1 • Biolayer interferometry allows target protein quantitation in expression media • High production yields in the bioreactor do not impair Netrin-1 proteoglycan quality Graphical abstract


2002 ◽  
Vol 267 (4) ◽  
pp. 440-446 ◽  
Author(s):  
A. Kapetanopoulos ◽  
F. Fresser ◽  
G. Millonig ◽  
Y. Shaul ◽  
G. Baier ◽  
...  

Genetics ◽  
2021 ◽  
Author(s):  
Mélissa Cizeron ◽  
Laure Granger ◽  
Hannes E BÜlow ◽  
Jean-Louis Bessereau

Abstract Heparan sulfate proteoglycans contribute to the structural organization of various neurochemical synapses. Depending on the system, their role involves either the core protein or the glycosaminoglycan chains. These linear sugar chains are extensively modified by heparan sulfate modification enzymes, resulting in highly diverse molecules. Specific modifications of glycosaminoglycan chains may thus contribute to a sugar code involved in synapse specificity. Caenorhabditis elegans is particularly useful to address this question because of the low level of genomic redundancy of these enzymes, as opposed to mammals. Here, we systematically mutated the genes encoding heparan sulfate modification enzymes in C. elegans and analyzed their impact on excitatory and inhibitory neuromuscular junctions. Using single chain antibodies that recognize different heparan sulfate modification patterns, we show in vivo that these two heparan sulfate epitopes are carried by the SDN-1 core protein, the unique C. elegans syndecan orthologue, at neuromuscular junctions. Intriguingly, these antibodies differentially bind to excitatory and inhibitory synapses, implying unique heparan sulfate modification patterns at different neuromuscular junctions. Moreover, while most enzymes are individually dispensable for proper organization of neuromuscular junctions, we show that 3-O-sulfation of SDN-1 is required to maintain wild-type levels of the extracellular matrix protein MADD-4/Punctin, a central synaptic organizer that defines the identity of excitatory and inhibitory synaptic domains at the plasma membrane of muscle cells.


Sign in / Sign up

Export Citation Format

Share Document