scholarly journals The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks

Polymers ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 151 ◽  
Author(s):  
Liqun Yang ◽  
Jianxin Li ◽  
Miao Li ◽  
Zhongwei Gu
Polymer ◽  
2014 ◽  
Vol 55 (20) ◽  
pp. 5111-5124 ◽  
Author(s):  
Liqun Yang ◽  
Jianxin Li ◽  
Shu Meng ◽  
Ying Jin ◽  
Jinzhe Zhang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


2021 ◽  
Vol 27 ◽  
pp. 102369
Author(s):  
Shijun Lu ◽  
Xiaochen Tang ◽  
Qingqing Lu ◽  
Jiwei Huang ◽  
Xinran You ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1438
Author(s):  
Silvio Curia ◽  
Feifei Ng ◽  
Marie-Emérentienne Cagnon ◽  
Victor Nicoulin ◽  
Adolfo Lopez-Noriega

This article presents the evaluation of diblock and triblock poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) amphiphilic copolymers (PEG-PTMCs) as excipients for the formulation of long-acting injectables (LAIs). Copolymers were successfully synthesised through bulk ring-opening polymerisation. The concomitant formation of PTMC homopolymer could not be avoided irrespective of the catalyst amount, but the by-product could easily be removed by gel chromatography. Pure PEG-PTMCs undergo faster erosion in vivo than their corresponding homopolymer. Furthermore, these copolymers show outstanding stability compared to their polyester analogues when formulated with amine-containing reactive drugs, which makes them particularly suitable as LAIs for the sustained release of drugs susceptible to acylation.


2005 ◽  
Vol 16 (11) ◽  
pp. 1017-1028 ◽  
Author(s):  
Ying Wan ◽  
Aixi Yu ◽  
Hua Wu ◽  
Zhaoxu Wang ◽  
Dijiang Wen

2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament


Author(s):  
Santanu Mandal ◽  
Viraj Rathod ◽  
Samit Kumar Nandi ◽  
Mangal Roy

Iron (Fe) based scaffolds are promising candidates as degradable metallic scaffolds. High strength and ability to control the degradation with tailormade composition and porosity are specific advantages of these scaffolds....


Sign in / Sign up

Export Citation Format

Share Document