therapeutic monoclonal antibodies
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 150)

H-INDEX

47
(FIVE YEARS 8)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Christophe Maritaz ◽  
Sophie Broutin ◽  
Nathalie Chaput ◽  
Aurélien Marabelle ◽  
Angelo Paci

AbstractAnti-CTLA-4 and anti-PD-1/PD-L1 immune checkpoint inhibitors are therapeutic monoclonal antibodies that do not target cancer cells but are designed to reactivate or promote antitumor immunity. Dosing and scheduling of these biologics were established according to conventional drug development models, even though the determination of a maximum tolerated dose in the clinic could only be defined for anti-CTLA-4. Given the pharmacology of these monoclonal antibodies, their high interpatient pharmacokinetic variability, the actual clinical benefit as monotherapy that is observed only in a specific subset of patients, and the substantial cost of these treatments, a number of questions arise regarding the selected dose and the dosing interval. This review aims to outline the development of these immunotherapies and considers optimization options that could be used in clinical practice.


Author(s):  
Atul Goyal ◽  
Binh Vu ◽  
Vijay Maranholkar ◽  
Ujwal Patil ◽  
Katerina Kourentzi ◽  
...  

In the manufacture of therapeutic monoclonal antibodies (mAbs), the clarified cell culture fluid is typically loaded onto an initial protein A affinity capture column. Imperfect mass transfer and loading to maximum capacity can risk antibody breakthrough and loss of valuable product, but conservative underloading wastes expensive protein A resin. In addition, the effects of column fouling and ligand degradation require the frequent optimization of IgG loading to avoid wastage. Therefore, continuous real-time monitoring of IgG flowthrough is of great interest. We previously developed a fluorescence-based monitoring technology that allows mix-and-read mAb detection in cell culture fluid. Here we report the use of reporters immobilized on CNBr-activated Sepharose 4B resin for continuous detection of IgG in column breakthrough. The column effluent is continuously contacted with immobilized fluorescein-labeled Fc-binding ligands to produce an immediately detectable change in fluorescence intensity. The technology allows rapid and reliable monitoring of IgG in a flowing stream of clarified cell culture fluid emerging from a Protein A column, without prior sample preparation. We observed a significant change in fluorescence intensity at 0.5 g/L human IgG, sufficient to detect a 5% breakthrough of a 10 g/L load, within 2 minutes at a flow rate of 0.5 mL/min.


2021 ◽  
Author(s):  
Laura VanBlargan ◽  
John Errico ◽  
Peter Halfmann ◽  
Seth Zost ◽  
James Crowe ◽  
...  

Abstract The emergence of the highly-transmissible B.1.1.529 Omicron variant of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is concerning for antibody countermeasure efficacy because of the number of mutations in the spike protein. Here, we tested a panel of anti-receptor binding domain monoclonal antibodies (mAbs) corresponding to those in clinical use by Vir Biotechnology (S309, the parent mAb of VIR-7831 [Sotrovimab]), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LY-CoV016), and Celltrion (CT-P59) for their ability to neutralize an infectious B.1.1.529 Omicron isolate. Several mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987, and CT-P59) completely lost neutralizing activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (COV2-2196 and COV2-2130 combination, ~12-fold decrease) or minimally affected (S309). Our results suggest that several, but not all, of the antibodies in clinical use may lose efficacy against the B.1.1.529 Omicron variant.


2021 ◽  
pp. 1-10
Author(s):  
Yasmine El Abd ◽  
Ashraf Tabll ◽  
Robert Smolic ◽  
Martina Smolic

BACKGROUND: The emergence of novel viruses poses severe challenges to global public health highlighting the crucial necessity for new antivirals. MAIN BODY: Monoclonal antibodies (mAbs) are immunoglobulins that bind with a single epitope. Mouse mAbs are generated by classic hybridoma technology and are mainly used for immunodiagnostics. For immunotherapy, it is critical to use monoclonal antibodies in the human form to minimize adverse reactions. They have been successfully used to treat numerous illnesses, accordingly, an increasing number of mAbs, with high potency against emerging viruses is the target of every biopharmaceutical company. The diagnostic and therapeutic mAbs market grows rapidly into a multi-billion-dollar business. Biopharmaceuticals are innovative resolutions which revolutionized the treatment of significant chronic diseases and malignancies. Currently, a variety of therapeutic options that include antiviral medications, monoclonal antibodies, and immunomodulatory agents are available in the management of COVID-19. SHORT CONCLUSION: The invasion of mAbs in new medical sectors will increase the market magnitude as it is expected to generate revenue of about 300 billion $ by 2025. In the current mini-review, the applications of monoclonal antibodies in immune-diagnosis and immunotherapy will be demonstrated, particularly for COVID-19 infection and will focus mainly on monoclonal antibodies in the market.


2021 ◽  
Author(s):  
Laura A VanBlargan ◽  
John M Errico ◽  
Peter Halfmann ◽  
Seth J Zost ◽  
James E. Crowe ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic resulting in millions of deaths worldwide. Despite the development and deployment of highly effective antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. Indeed, the recent emergence of the highly-transmissible B.1.1.529 Omicron variant is especially concerning because of the number of mutations, deletions, and insertions in the spike protein. Here, using a panel of anti-receptor binding domain (RBD) monoclonal antibodies (mAbs) corresponding to those with emergency use authorization (EUA) or in advanced clinical development by Vir Biotechnology (S309, the parent mAbs of VIR-7381), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LY-CoV016), and Celltrion (CT-P59), we report the impact on neutralization of a prevailing, infectious B.1.1.529 Omicron isolate compared to a historical WA1/2020 D614G strain. Several highly neutralizing mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987, and CT-P59) completely lost inhibitory activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (~12-fold decrease, COV2-2196 and COV2-2130 combination) or minimally affected (S309). Our results suggest that several, but not all, of the antibody products in clinical use will lose efficacy against the B.1.1.529 Omicron variant and related strains.


2021 ◽  
Author(s):  
Delphine Planas ◽  
Nell Saunders ◽  
Piet Maes ◽  
Florence Guivel Benhassine ◽  
Cyril Planchais ◽  
...  

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa. It has in the meantime spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of about 32 mutations in the Spike, located mostly in the N-terminal domain (NTD) and the receptor binding domain (RBD), which may enhance viral fitness and allow antibody evasion. Here, we isolated an infectious Omicron virus in Belgium, from a traveller returning from Egypt. We examined its sensitivity to 9 monoclonal antibodies (mAbs) clinically approved or in development, and to antibodies present in 90 sera from COVID-19 vaccine recipients or convalescent individuals. Omicron was totally or partially resistant to neutralization by all mAbs tested. Sera from Pfizer or AstraZeneca vaccine recipients, sampled 5 months after complete vaccination, barely inhibited Omicron. Sera from COVID-19 convalescent patients collected 6 or 12 months post symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titers 5 to 31 fold lower against Omicron than against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and to a large extent vaccine-elicited antibodies.


2021 ◽  
Author(s):  
Nariko Ikemura ◽  
Atsushi Hoshino ◽  
Yusuke Higuchi ◽  
Shunta Taminishi ◽  
Tohru Inaba ◽  
...  

The novel SARS-CoV-2 variant, Omicron (B.1.1.529) contains about 30 mutations in the spike protein and the numerous mutations raise the concern of escape from vaccine, convalescent sera and therapeutic drugs. Here we analyze the alteration of their neutralizing titer with Omicron pseudovirus. Sera of 3 months after double BNT162b2 vaccination exhibite ~27-fold lower neutralization titers against Omicron than D614G mutation. Neutralization titer is also reduced in convalescent sera from Alpha and Delta patients. However, some Delta patients have relatively preserved neutralization activity up to the level of 3-month double BNT162b2 vaccination. Omicron escapes from the cocktail of imdevimab and casirivimab, whereas sotrovimab that targets the conserved region to prevent viral escape is effective to Omicron similarly to the original SARS-CoV-2. The ACE2 decoy is another modality that neutralize the virus independently of mutational escape and Omicron is also sensitive to the engineered ACE2.


Hemato ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 764-768
Author(s):  
Katie L. Thoren

In recent years, mass spectrometry has been increasingly used for the detection of monoclonal proteins in serum. Mass spectrometry is more analytically sensitive than serum protein electrophoresis and immunofixation, can help distinguish therapeutic monoclonal antibodies from M-proteins, and can detect the presence of post-translational modifications. Mass spectrometry also shows promise as a less-invasive, peripheral-blood-based test for detecting minimal residual disease in multiple myeloma. Studies comparing the clinical utility of mass spectrometry to current blood- and bone-marrow-based techniques have been conducted. Although still primarily limited to research settings, clinical laboratories are starting to adopt this technique for patient care. This review will discuss the current status of mass spectrometry testing for multiple myeloma, the benefits and challenges of this technique, and how it may be incorporated into clinical practice in the future.


2021 ◽  
Author(s):  
Nathaniel L. Miller ◽  
Thomas Clark ◽  
Rahul Raman ◽  
Ram Sasisekharan

The SARS-COV2 Omicron variant has sparked global concern due to the possibility of enhanced transmissibility and escape from vaccines and therapeutics. In this study, we describe the mutational landscape of the Omicron variant using amino acid interaction (AAI) networks. AAI network analysis is particularly well suited for interrogating the impact of constellations of mutations as occur on Omicron that may function in an epistatic manner. Our analyses suggest that as compared to previous variants of concern, the Omicron variant has increased antibody escape breadth due to mutations in class 3 and 4 antibody epitopes as well as increased escape depth due to accumulated mutations in class 1 antibody epitopes. We note certain RBD mutations that might further enhance Omicron escape, and in particular advise careful surveillance of two subclades bearing R346S/K mutations. Further, AAI network analysis suggests that the function of certain therapeutic monoclonal antibodies may be disrupted by Omicron mutations as a result of the cumulative indirect perturbations to the epitope surface properties, despite point-mutation analyses suggesting these antibodies are tolerant of the set of Omicron mutations in isolation. Finally, for several Omicron mutations that do not appear to contribute meaningfully to antibody escape, we find evidence for a plausible role in enhanced transmissibility via disruption of RBD-down conformational stability at the RBD-RBD interface.


Sign in / Sign up

Export Citation Format

Share Document