scholarly journals Supercritical Carbon Dioxide Cycles for Concentrated Solar Power Plants: A Possible Alternative for Solar Desalination

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 72
Author(s):  
Rafael González-Almenara ◽  
Pablo Rodríguez de Arriba ◽  
Francesco Crespi ◽  
David Sánchez ◽  
Antonio Muñoz ◽  
...  

This manuscript investigates the supercritical carbon dioxide (sCO2) power cycle employed in the power block of concentrated solar power (CSP) plants—solar tower—as an alternative for solar desalination, developed with either distillation or reverse osmosis. This concept is investigated as a possible up-scaling of the SOLMIDEFF project, originally based on a hot-air micro gas turbine combined with a solar dish collector. For the upscaled concept, five different sCO2 cycles are considered, chosen amongst the best-performing configurations proposed in the literature for CSP applications, and modelled with Thermoflex software. The influence of ambient conditions is studied, considering two minimum cycle temperatures (35 °C and 50 °C), corresponding to Santa Cruz de Tenerife and Abu Dhabi, respectively. The results show that the low temperatures at the inlet of the heat rejection unit compromise the viability of distillation technologies. On the other hand, the high thermal efficiency achieved by these cycles, especially with the recompression and partial cooling layouts, reduces the specific energy consumption when combined with reverse osmosis (RO), below that of photovoltaic (PV)+RO. Feed-water preheating is explored as a solution to further reduce energy consumption, concluding that its actual interest is not clear and strongly depends on the location considered and the corresponding water quality standards.

2020 ◽  
Vol 10 (15) ◽  
pp. 5049 ◽  
Author(s):  
Francesco Crespi ◽  
David Sánchez ◽  
Gonzalo S. Martínez ◽  
Tomás Sánchez-Lencero ◽  
Francisco Jiménez-Espadafor

This paper provides an assessment of the expected Levelised Cost of Electricity enabled by Concentrated Solar Power plants based on Supercritical Carbon Dioxide (sCO 2 ) technology. A global approach is presented, relying on previous results by the authors in order to ascertain whether these innovative power cycles have the potential to achieve the very low costs of electricity reported in the literature. From a previous thermodynamic analysis of sCO 2 cycles, three layouts are shortlisted and their installation costs are compared prior to assessing the corresponding cost of electricity. Amongst them, the Transcritical layout is then discarded due to the virtually impossible implementation in locations with high ambient temperature. The remaining layouts, Allam and Partial Cooling are then modelled and their Levelised Cost of Electricity is calculated for a number of cases and two different locations in North America. Each case is characterised by a different dispatch control scheme and set of financial assumptions. A Concentrated Solar Power plant based on steam turbine technology is also added to the assessment for the sake of comparison. The analysis yields electricity costs varying in the range from 8 to over 11 ¢/kWh, which is near but definitely not below the 6 ¢/kWh target set forth by different administrations. Nevertheless, in spite of the results, a review of the conservative assumptions adopted in the analysis suggests that attaining costs substantially lower than this is very likely. In other words, the results presented in this paper can be taken as an upper limit of the economic performance attainable by Supercritical Carbon Dioxide in Concentrated Solar Power applications.


2021 ◽  
Author(s):  
F. Crespi ◽  
G. S. Martínez ◽  
P. Rodriguez de Arriba ◽  
D. Sánchez ◽  
F. Jiménez-Espadafor

Abstract The supercritical Carbon Dioxide power cycle technology has attracted growing interest from the scientific community, becoming one of the most important options currently considered for CSP applications. This is thanks to its high thermal efficiency, even at moderate turbine inlet temperatures, and small footprint. Nevertheless, sCO2 power cycles require a fairly low compressor inlet temperature to exploit their full thermodynamic potential. When this cannot be achieved, as it is usually the case for Concentrated Solar Power plants where ambient temperatures are high, the interest of the technology is compromised. To compensate for this effect, the SCARABEUS project is working on the development of certain chemical dopants that could be added to the raw CO2, obtaining new working fluids with the same or even better performance than pure CO2 even at higher minimum cycle temperatures. This paper studies the impact of using CO2 mixtures blended with Hexaflurorobenzene (C6F6) and Titanium Tetrachloride (TiCl4). It is found that these mixtures enable thermal efficiencies that are higher than if pure CO2 were used. The efficiency gain can be as high as 3 percentage points, depending on the dopant used and the operating conditions considered. In addition to this absolute performance gain, the paper reveals that there are additional degrees of freedom that enable more effective cycle optimisation. These are the dopant molar content, not only its composition, and the cycle layout used. When this is studied, it is found that the optimum molar content ranges from 10 to 20% and that the layouts of interest when using mixtures are simpler than if plain CO2 were used. These results open the way for a significant performance enhancement of Concentrated Solar Power plants.


Sign in / Sign up

Export Citation Format

Share Document