scholarly journals Development of Hydrophilic Drug Encapsulation and Controlled Release Using a Modified Nanoprecipitation Method

Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 331
Author(s):  
Jiang Xu ◽  
Yuyan Chen ◽  
Xizhi Jiang ◽  
Zhongzheng Gui ◽  
Lei Zhang

The improvement of the loading content of hydrophilic drugs by polymer nanoparticles (NPs) recently has received increased attention from the field of controlled release. We developed a novel, simply modified, drop-wise nanoprecipitation method which separated hydrophilic drugs and polymers into aqueous phase (continuous phase) and organic phase (dispersed phase), both individually and involving a mixing process. Using this method, we produced ciprofloxacin-loaded NPs by Poly (d,l-lactic acid)-Dextran (PLA-DEX) and Poly lactic acid-co-glycolic acid-Polyethylene glycol (PLGA-PEG) successfully, with a considerable drug-loading ability up to 27.2 wt% and an in vitro sustained release for up to six days. Drug content with NPs can be precisely tuned by changing the initial drug feed concentration of ciprofloxacin. These studies suggest that this modified nanoprecipitation method is a rapid, facile, and reproducible technique for making nano-scale drug delivery carriers with high drug-loading abilities


Author(s):  
Sathishkumar Kannaiyan ◽  
T.G.Ashwin Narayanan ◽  
P.Karthick Sarathy ◽  
Nagarjun Sudhakar ◽  
Rama Krishnan

Poly lactic acid-polyethylene glycol (PLA-co-PEG) copolyester was synthesized from oligomer of L-lactic acid and poly ethylene glycol (PEG) using stannous octoate as catalyst. 6-Thioguanine containing Poly lactic acid-polyethylene glycol (PLA-co-PEG) nanocapsules were prepared in the presence and absence of gold nanoparticles via the W/O/W emulsification solvent-evaporation method. The morphologies of prepared nanocapsules changed substantially because of the presence of gold nanoparticles. From SEM and TEM measurements, the average size of the polymer nanocapsules and gold nanoparticles were found to be in range of 230-260 nm and 18-20 nm, respectively. In general the drug release was quicker in Phosphate buffer saline (pH 7.4) compared to 0.1M hydrochloric acid and this may be due to higher solubility, higher swelling and penetration properties of PLA-co-PEG in PBS compared to HCl. Polymer nanocapsules with gold show a prolonged controlled release with higher encapsulation efficiency (75%) compared to that of polymer nanocapsules (45%) in the absence of gold nanoparticles. It may be due to the more entrapping efficiency of gold and less diffusivity of drugs from the nanocapsules. Application of in vitro drug release data to various kinetic equations indicated Higuchi model, indicating a uniform distribution of thioguanine in the nanocapsules.



RSC Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 3623-3623
Author(s):  
Junyan Yao ◽  
Shijie Zhang ◽  
Wudan Li ◽  
Zhi Du ◽  
Yujie Li

Correction for ‘In vitro drug controlled-release behavior of an electrospun modified poly(lactic acid)/bacitracin drug delivery system’ by Junyan Yao et al., RSC Adv., 2016, 6, 515–521.





2018 ◽  
Vol 116 ◽  
pp. 354-363 ◽  
Author(s):  
Meili Shen ◽  
Hongli Li ◽  
Mingwei Yuan ◽  
Lin Jiang ◽  
Xiangyu Zheng ◽  
...  


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.



2012 ◽  
Vol 44 ◽  
pp. 866-868 ◽  
Author(s):  
A.P.S. Immich ◽  
M. Lis ◽  
L.H. Catalani ◽  
R.L. Boemo ◽  
J.A. Tornero


2006 ◽  
Vol 103 (3) ◽  
pp. 2006-2012 ◽  
Author(s):  
Bhuvanesh Gupta ◽  
Nilesh Revagade ◽  
Jöns Hilborn


2018 ◽  
Vol 26 (9) ◽  
pp. 3802-3816 ◽  
Author(s):  
Yixin Deng ◽  
Changyi Yu ◽  
Peangpatu Wongwiwattana ◽  
Noreen L. Thomas


Sign in / Sign up

Export Citation Format

Share Document