scholarly journals Green and Facile Synthesis of Dendritic and Branched Gold Nanoparticles by Gelatin and Investigation of Their Biocompatibility on Fibroblast Cells

Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 631 ◽  
Author(s):  
Quoc Khuong Vo ◽  
My Nuong Nguyen Thi ◽  
Phuong Phong Nguyen Thi ◽  
Duy Trinh Nguyen

In this work, gold nanostar (AuNPs) and gold nanodendrites were synthesized by one-pot and environmentally friendly approach in the presence of gelatin. Influence of gelatin concentrations and reaction conditions on the growth of branched (AuNPs) were investigated further. Interestingly, the conversion of morphology between dendritic and branched nanostructure can be attained by changing the pH value of gelatin solution. The role of gelatin as a protecting agent through the electrostatic and steric interaction was also revealed. Branched nanoparticles were characterized by surface plasmon resonance spectroscopy (SPR), transmission electron microscopy (TEM), XRD, dynamic light scattering (DLS) and zeta-potential. The chemical interaction of gelatin with branched gold nanoparticles was analyzed by Fourier transform infrared spectroscopy (FT-IT) technique. Ultraviolet visible spectroscopy results indicated the formation of branched gold nanoparticles with the maximum surface plasmon resonance peak at 575–702 nm. The structure of both nanodendrites and nanostars were determined by TEM. The crystal sizes of nano-star ranged from 42 to 55 nm and the nanodendrites sizes were about 75–112 nm. Based on the characterizations, a growth mechanism could be proposed to explain morphology evolutions of branched AuNPs. Moreover, the branched AuNPs is high viability at 100 μg/mL concentration when performed by the SRB assay with human foreskin fibroblast cells.

RSC Advances ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 444-449 ◽  
Author(s):  
O. Stroyuk ◽  
A. Raevskaya ◽  
G. Grodzyuk ◽  
N. Andriushina ◽  
M. Skoryk ◽  
...  

Interaction of forming Au nanocrystals with single-layer carbon nitride nanosheets allows the surface plasmon resonance peak position of gold/carbon nitride composites to be tuned in a range of 520–610 nm.


2012 ◽  
Vol 1449 ◽  
Author(s):  
Enrico Della Gaspera ◽  
Giovanni Mattei ◽  
Alessandro Martucci

ABSTRACTThe favorable lattice matching between Au and NiO crystals made possible the growth of unique cookie-like nanoparticles (25 nm mean diameter) inside a porous SiO2 film after annealing at 700 °C. The unusual aggregates result from the coupling of well distinguishable Au and NiO hemispheres, which respectively face each other through the (100) and (200) lattice planes. The thermal evolution of the Au and NiO nanoparticles structure has been studied by high resolution transmission electron microscopy and UV-visible absorption spectroscopy and correlated with the evolution of the Au surface plasmon resonance peak.


2014 ◽  
Vol 602-603 ◽  
pp. 993-997
Author(s):  
Gui Jun Ban ◽  
Xiu Li Fu ◽  
Zhi Jian Peng

Gold nanorods with different aspect ratios, exhibiting localized surface plasmon resonance in a tuned longitudinal mode, were prepared by employing a seed mediated growth approach. Their third-order nonlinear optical properties were investigated by using femtosecond Z-scan technique at 800 nm. All the prepared gold nanorods with different aspect ratios exhibited a reverse saturation absorbance behavior, and the value of effective nonlinear absorption coefficient reaches its maximum when the longitudinal surface plasmon resonance peak of the gold nanorods located near the excitation wavelength.


Author(s):  
Thi Nhat Hang Nguyen ◽  
Thi Le Trinh Nguyen ◽  
Thi Thanh Tuyen Luong ◽  
Canh Minh Thang Nguyen ◽  
Thi Phuong Phong Nguyen

2021 ◽  
Vol 4 (3(60)) ◽  
pp. 9-13
Author(s):  
Iryna Yaremchuk ◽  
Tetiana Bulavinets

The object of research is plasmonic properties copper of monosulfide nanoparticles. One of the most problematic areas is that there is still no unambiguous answer to which main copper monosulfide nanoparticles parameters have a decisive effect on their resonance absorption, scattering or electric field enhancement. It is necessary to study the plasmonic properties of copper monosulfide nanoparticles depending on their main parameter, namely the dielectric constant. The principle of dipole equivalence and Mee-Gans theory for the modeling of the optical nanoparticle characteristics is used. It is found that dielectric constant is a crucial parameter determining the resulting optical response of such nanoparticles. The surrounding medium refractive index affects the position and magnitude of the nanoparticles maximum plasmonic absorption. The nonspherical nanoparticles are characterized by two plasmon peaks corresponding to transverse and longitudinal localized surface plasmon resonance if the ratio between the axes is higher than 1.5. The ellipsoidal nanoparticles exhibit higher sensitivity to changes in the refractive index of the surrounding medium in comparison to the spherical ones. The obtained research results are primarily the basis for further comprehensive research of plasmonic copper monosulfide nanoparticles for their specialized applications. Second, knowledge of the influence of the nanoparticle dielectric constant on their resulting spectral characteristics allow tuning of the localized surface plasmon resonance peak position in a wide wavelength range, from 500 to 1200 nm, using the nanoparticle synthesis technique. Thus, the material under study is promising for sensor applications in a wide spectral range.


Sign in / Sign up

Export Citation Format

Share Document