scholarly journals Physical and Thermal Studies of Carbon-Enriched Silicon Oxycarbide Synthesized from Floating Plants

Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 794 ◽  
Author(s):  
Guan-Ting Pan ◽  
Siewhui Chong ◽  
Yi Jing Chan ◽  
Timm Joyce Tiong ◽  
Jun Wei Lim ◽  
...  

In the present study, amorphous mesoporous silicon oxycarbide materials (SiOC) were successfully synthesized via a low-cost facile method by using potassium hydroxide activation, high temperature carbonization, and acid treatment. The precursors were obtained from floating plants (floating moss, water cabbage, and water caltrops). X-ray diffraction (XRD) results confirmed the amorphous Si–O–C structure and Raman spectra revealed the graphitized carbon phase. Floating moss sample resulted in a rather rough surface with irregular patches and water caltrops sample resulted in a highly porous network structure. The rough surface of the floating moss sample with greater particle size is caused by the high carbon/oxygen ratio (1: 0.29) and low amount of hydroxyl group compared to the other two samples. The pore volumes of these floating moss, water cabbage, and water caltrops samples were 0.4, 0.49, and 0.63 cm3 g−1, respectively, resulting in thermal conductivities of 6.55, 2.46, and 1.14 Wm−1 K−1, respectively. Floating plants, or more specifically, floating moss, are thus a potential material for SiOC production.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650043 ◽  
Author(s):  
Haolin Wu ◽  
Jie Yang ◽  
Haibiao Chen ◽  
Feng Pan

Preferentially etching either carbon or silica from silicon oxycarbide (SiOC) created a porous network as an inverse image of the removed phase. The porous structure was analyzed by gas adsorption, and the experimental results verified the nanodomain structure of SiOC. This work demonstrated a novel approach for analyzing materials containing nanocomposite structures.



Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 754 ◽  
Author(s):  
Manuel Weinberger ◽  
Po-Hua Su ◽  
Herwig Peterlik ◽  
Mika Lindén ◽  
Margret Wohlfahrt-Mehrens

Silicon oxycarbides (SiOC) are an interesting alternative to state-of-the-art lithium battery anode materials, such as graphite, due to potentially higher capacities and rate capabilities. Recently, it was also shown that this class of materials shows great prospects towards sodium ion batteries. Yet, bulk SiOCs are still severely restricted with regard to their electrochemical performance. In the course of this work, a novel and facile strategy towards the synthesis of mesoporous and carbon-rich SiOC will be presented. To achieve this goal, 4,4′-bis(triethoxysilyl)-1,1′-biphenyl was sol–gel processed in the presence of the triblock copolymer Pluronic P123. After the removal of the surfactant using Soxhlet extraction the organosilica material was subsequently carbonized under an inert gas atmosphere at 1000 °C. The resulting black powder was able to maintain all structural features and the porosity of the initial organosilica precursor making it an interesting candidate as an anode material for both sodium and lithium ion batteries. To get a detailed insight into the electrochemical properties of the novel material in the respective battery systems, electrodes from the nanostructured SiOC were studied in half-cells with galvanostatic charge/discharge measurements. It will be shown that nanostructuring of SiOC is a viable strategy in order to outperform commercially applied competitors.



Author(s):  
Guanjia Zhu ◽  
Rui Guo ◽  
Wei Luo ◽  
Hua Kun Liu ◽  
Wan Jiang ◽  
...  

Abstract Despite desirable progress in various assembly tactics, the main drawback associated with current assemblies is the weak interparticle connections limited by their assembling protocols. Herein, we report a novel boron doping-induced interconnection-assembly approach for fabricating an unprecedented assembly of mesoporous silicon oxycarbide nanospheres, which are derived from periodic mesoporous organosilicas. The as-prepared architecture is composed of interconnected, strongly coupled nanospheres with coarse surfaces. Significantly, through delicate analysis of the as-formed boron doped species, a novel melt-etching and nucleation-growth mechanism is proposed, which offers a new horizon for the developing interconnected assembling technique. Furthermore, such unique strategy shows precise controllability and versatility, endowing the architecture with tunable interconnection size, surface roughness and switchable primary nanoparticles. Impressively, this interconnected assembly along with tunable surface roughness enables intrinsically dual (both structural and interfacial) stable characteristics, achieving extraordinary long-term cycle life when used as a lithium-ion battery anode.



2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ravindran Sujith ◽  
Pawan Kumar Chauhan ◽  
Jella Gangadhar ◽  
Ankur Maheshwari




2011 ◽  
Vol 14 ◽  
pp. 27-38 ◽  
Author(s):  
J.L. Oteo ◽  
M. Alejandra Mazo ◽  
Cristina Palencia ◽  
F. Rubio ◽  
Juan Rubio

Bulk silicon oxycarbide derived ceramic nanocomposites have been prepared by the application of the conventional ceramic processing to preceramic materials. Tetraethylortosilicate/ polydimethylsiloxane preceramic materials obtained by sol-gel process were thermally treated and attrition milled to 4 micrometers. Subsequently, the preceramic powders were pyrolized at 1100 °C to obtain silicon oxycarbide powders that were pressed and sintered at 1550 °C up to 16 hours. Silicon oxycarbide glasses obtained at 1100 °C from pyrolysis of preceramic materials consist of a Si-O-C network and a carbon like graphite phase well dispersed. At annealing temperatures higher than 1100°C silicon oxycarbide glasses undergo a rearrangement which involves a phase separation to silica and silicon carbide and a segregation of carbon like graphite phase. At these temperatures the material can be considered as a glassy matrix nanocomposite. At temperatures higher than 1500 °C the carbothermal reduction occurs with the consumption of both silica and free carbon phase. However, the nanocomposite structure is maintained but with different constituents. The silicon oxycarbide glasses obtained at 1100 °C are amorphous. However, as a result of all involving processes taken place during the ceramic process, the nanocomposites formed at 1550 °C comprise a silica matrix and nanodomains of carbon like graphite and silicon carbide both of them displaying an incipient crystallization. Structure and crystalline size evolution, from preceramic materials to silicon oxycarbide derived nanocomposites, have been determined by FT-IR and Raman spectroscopies, XRD and 29Si-MASNMR.







Sign in / Sign up

Export Citation Format

Share Document