scholarly journals Risk Assessment of Potentially Toxic Elements Pollution from Mineral Processing Steps at Xikuangshan Antimony Plant, Hunan, China

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29
Author(s):  
Saijun Zhou ◽  
Renjian Deng ◽  
Andrew Hursthouse

We evaluated the direct release to the environment of a number of potentially toxic elements (PTEs) from various processing nodes at Xikuangshan Antimony Mine in Hunan Province, China. Sampling wastewater, processing dust, and solid waste and characterizing PTE content (major elements Sb, As, Zn, and associated Hg, Pb, and Cd) from processing activities, we extrapolated findings to assess wider environmental significance using the pollution index and the potential ecological risk index. The Sb, As, and Zn in wastewater from the antimony benefication industry and a wider group of PTEs in the fine ore bin were significantly higher than their reference values. The content of Sb, As, and Zn in tailings were relatively high, with the average value being 2674, 1040, and 590 mg·kg−1, respectively. The content of PTEs in the surface soils surrounding the tailings was similar to that in tailings, and much higher than the background values. The results of the pollution index evaluation of the degree of pollution by PTEs showed that while dominated by Sb, some variation in order of significance was seen namely for: (1) The ore processing wastewater Sb > Pb > As > Zn > Hg > Cd, (2) in dust Sb > As > Cd > Pb > Hg > Zn, and (3) surface soil (near tailings) Sb > Hg > Cd > As > Zn > Pb. From the assessment of the potential ecological risk index, the levels were most significant at the three dust generation nodes and in the soil surrounding the tailings reservoir.

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1532
Author(s):  
Jing Bai ◽  
Wen Zhang ◽  
Weiyin Liu ◽  
Guohong Xiang ◽  
Yu Zheng ◽  
...  

A field survey was conducted to determine the pollution grade, sources, potential ecological risk, and health risk of soil potentially toxic elements (PTEs) in Xikuangshan Mine (XKS), the largest antimony (Sb) deposit in the world. A total of 106 topsoil samples were collected from 6 sites in XKS to measure the concentrations of PTEs Cr, Zn, Cd, Pb, As, Hg, and Sb. The results show that the average concentrations of these elements at all six sites were generally greater than their corresponding background values in Hunan province, especially Sb, Hg, and As. Correlation and principal component analyses suggested that Cd, Zn, Pb, Hg, and Sb were primarily released from mining and other industrial and human activities, while Cr and As were mainly impacted by the parent material from pedogenesis. A risk index analysis showed that, overall, sites were at very high ecological risk, and Sb is the highest ecological risk factor, followed by Cd and Hg. According to health risk assessment, oral ingestion is the main non-carcinogenic and carcinogenic risk exposure route. The higher potentially non-carcinogenic and carcinogenic risks happen to the local children who live in the vicinity of mining area. It revealed that the mining and smelting processes of XKS have negatively influenced the local people, therefore, we should pay increasing attention to this practical issue and take effective measures to protect the ecology of XKS.


2014 ◽  
Vol 1051 ◽  
pp. 552-556
Author(s):  
Xiao Tian Ma ◽  
Ren Jun Liang ◽  
Ji Cai Qiu ◽  
Li Zhi Wang ◽  
Xiu Zhen Wang

This study used four acid digestion methods and the Tessier five-step method to analyze the content characteristics of the elements Hg and As in samples. Further measures included the enrichment factor, geoaccumulation index and potential ecological risk index, for a comprehensive ecological risk assessment of pollution by Hg and As. The average contents were 1.16 mg·kg-1 for Hg and 46.76 mg·kg-1 for As.The two class natural background level was compared to evaluate the cumulative pollution index: among all sampling points, the Hg Igeo mean was-0.55, indicating this element was non-polluting, and the As Igeo mean of 0.23 indicated pollution-free to light pollution. The overall potential ecological risk index (RI) had a mean of 64.93, which indicated slight potential ecological harm to the wetland system.


2017 ◽  
Vol 43 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Cem Tokatli

Abstract Gala Lake National Park that has an international importance is one of the most important wetland ecosystems for Turkey. As same as many aquatic habitats, Gala Lake is under a significant anthropogenic pressure originated from agricultural activities conducted around the lake and from industrial discharges by means of Ergene River. The aim of this study was to evaluate the sediment quality of Gala Lake and Irrigation Canal by investigating some toxic element accumulations (As, B, Ni, Cr, Pb, Cd, Zn and Cu) from a statistical perspective. Pearson Correlation Index (PCI) and Factor Analysis (FA) were applied to detected data in order to determine the associated contaminants and effective factors on the system. Potential Ecological Risk Index (RI) and Biological Risk Index based sediment quality guidelines (mERM-Q) applied to detected data in order to assess the ecological and biological risks of heavy metals in the ecosystem. Also Geographic Information System (GIS) technology was used to make visual explanations by presenting distribution maps of investigated elements. According to the results of PCI, significant positive correlations were recorded among the investigated toxic elements at 0.01 significance level. According to the results of FA, two factors, which were named as “Agricultural Factor” and “Industrial Factor”, explained 86.6% of the total variance. According to the results of Potential Ecological Risk Index, cadmium was found to be the highest risk factor and according to results of Biological Risk Index, nickel and chromium were found to be the highest risk factors for Gala Lake and Irrigation Canal. As a result of the present study, it was also determined that heavy metal contents in sediments of Gala Lake National Park reached to critical levels and the system is intensively under effect of agricultural and industrial originated pollution.


2021 ◽  
Vol 13 (23) ◽  
pp. 13359
Author(s):  
Xiyang Wang ◽  
Liang Li ◽  
Naijia Guo ◽  
Zaijun Xin ◽  
Xiaohui Li ◽  
...  

To assess heavy metal pollution and ecological risk, a total of 28 surface paddy soil samples were collected and analyzed around a famous copper smelter in Guixi, China. The results showed that all sites were heavily contaminated by both Cu and Cd, compared with soil background values, whose average concentrations exceeded the standard by 5.7 and 12.3 times, respectively, posing a slight ecological risk related to Cu (potential ecological risk index <40) and an extremely serious ecological risk related to Cd (potential ecological risk index >320). The risks were also demonstrated through the speciation analyses of Cu (CaCl2-Cu 2.63%, acid-soluble Cu 8.67%, and residual Cu 74.17%, on average) and Cd (CaCl2-Cd 47.30%, acid-soluble Cd 45.02%, and residual Cd 28.87%, on average) in the surface paddy soil, including the use of a CaCl2 extraction procedure and the BCR (Community Bureau of Reference) sequential extraction scheme. Several soil properties (residual carbon, cation exchange capacity, and soil texture) were significantly correlated with soil Cd but made a small contribution to their variability with a poor linear fit because of external Cd input to the soil, while soil total potassium largely influenced the soil Cu species except for residual Cu. Therefore, an effective Cu pollution regulation strategy through soil potassium control is suggested for this smelter soil.


2020 ◽  
Vol 12 (17) ◽  
pp. 7224 ◽  
Author(s):  
Martin Brtnický ◽  
Václav Pecina ◽  
Tivadar Baltazár ◽  
Michaela Vašinová Galiová ◽  
Ludmila Baláková ◽  
...  

The environmental impacts of air transport and air transportation systems have become increasingly important and are heavily debated. The aim of the study was to determine the degree of soil contamination by the potentially toxic elements (Cu, Ni, Pb, and Zn) in the vicinity of the airport runway and to evaluate whether airport traffic has had factual toxic effects on airport vegetation. The overall assessment of soil contamination by means of the Nemerow integrated pollution index indicated slight pollution; evaluation by the geoaccumulation index evinced moderate contamination by Zn and nonexistent to moderate contamination by Cu, Ni, and Pb. A significant difference between the take-off and landing sections of the runway was not statistically confirmed. The vegetation risk assessment by means of the potential ecological risk index (RI) showed the low ecological risk, while the phytotoxicity test revealed an inhibition of up to 33.7%, with a slight inhibition of 16.7% on average, and thus low toxic effects of airport traffic on airport vegetation. The results of the linear regression model between phytotoxicity and RI manifested no relation between the two. The outcomes from other studies suggest that the range of elements and the extent of contamination can be highly variable at different airports and frequently affected by car traffic. Therefore, further research on this issue is needed for the more precise determination of the elements emitted by air traffic at airports.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1855 ◽  
Author(s):  
Zike Zhou ◽  
Yongping Wang ◽  
Haowei Teng ◽  
Hao Yang ◽  
Aiju Liu ◽  
...  

In this study, the concentrations of seven heavy metals (Cr, Ni, Cu, Zn, As, Hg, and Pb) and Pb isotope in a sediment core from the Shuanglong reservoir, Southwestern China, were investigated. Based on the constant rate of supply (CRS) model, the age span of a 60 cm sediment sample was determined to range from the years 1944 to 2015. Combined with chronology and heavy metal content, the evolution of the sources and pollution levels of heavy metals showed a changing trend composed of various stages. The sources of heavy metals transitioned from natural origins in 1944–1964 to industrial origins in 1965–2004. The subsequent reduction in heavy metal content was mainly due to the vigorous implementation of environmental protection policies from 2005 to 2012. In recent years (2013–2015), the heavy metal content has increased due to frequent human activity. Principal component analysis (PCA), correlation analysis, and the coefficient of variation (CV) analysis indicated that Cr, Ni, Cu, Zn, and As were derived from natural processes, Pb mainly came from automobile manufacturing, and Hg was mainly from industrial sources. The values of the geo-accumulation index (Ig), single pollution index (Pi), and single potential ecological risk index (Er) showed that the contamination of Hg and Pb was slight to moderate. Moreover, the values of the potential ecological risk index (RI), pollution load index (PLI), and Nemerow index (PN) indicated that the Shuanglong reservoir is under low ecological risk.


Sign in / Sign up

Export Citation Format

Share Document