scholarly journals Implications of Soil Potentially Toxic Elements Contamination, Distribution and Health Risk at Hunan’s Xikuangshan Mine

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1532
Author(s):  
Jing Bai ◽  
Wen Zhang ◽  
Weiyin Liu ◽  
Guohong Xiang ◽  
Yu Zheng ◽  
...  

A field survey was conducted to determine the pollution grade, sources, potential ecological risk, and health risk of soil potentially toxic elements (PTEs) in Xikuangshan Mine (XKS), the largest antimony (Sb) deposit in the world. A total of 106 topsoil samples were collected from 6 sites in XKS to measure the concentrations of PTEs Cr, Zn, Cd, Pb, As, Hg, and Sb. The results show that the average concentrations of these elements at all six sites were generally greater than their corresponding background values in Hunan province, especially Sb, Hg, and As. Correlation and principal component analyses suggested that Cd, Zn, Pb, Hg, and Sb were primarily released from mining and other industrial and human activities, while Cr and As were mainly impacted by the parent material from pedogenesis. A risk index analysis showed that, overall, sites were at very high ecological risk, and Sb is the highest ecological risk factor, followed by Cd and Hg. According to health risk assessment, oral ingestion is the main non-carcinogenic and carcinogenic risk exposure route. The higher potentially non-carcinogenic and carcinogenic risks happen to the local children who live in the vicinity of mining area. It revealed that the mining and smelting processes of XKS have negatively influenced the local people, therefore, we should pay increasing attention to this practical issue and take effective measures to protect the ecology of XKS.

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29
Author(s):  
Saijun Zhou ◽  
Renjian Deng ◽  
Andrew Hursthouse

We evaluated the direct release to the environment of a number of potentially toxic elements (PTEs) from various processing nodes at Xikuangshan Antimony Mine in Hunan Province, China. Sampling wastewater, processing dust, and solid waste and characterizing PTE content (major elements Sb, As, Zn, and associated Hg, Pb, and Cd) from processing activities, we extrapolated findings to assess wider environmental significance using the pollution index and the potential ecological risk index. The Sb, As, and Zn in wastewater from the antimony benefication industry and a wider group of PTEs in the fine ore bin were significantly higher than their reference values. The content of Sb, As, and Zn in tailings were relatively high, with the average value being 2674, 1040, and 590 mg·kg−1, respectively. The content of PTEs in the surface soils surrounding the tailings was similar to that in tailings, and much higher than the background values. The results of the pollution index evaluation of the degree of pollution by PTEs showed that while dominated by Sb, some variation in order of significance was seen namely for: (1) The ore processing wastewater Sb > Pb > As > Zn > Hg > Cd, (2) in dust Sb > As > Cd > Pb > Hg > Zn, and (3) surface soil (near tailings) Sb > Hg > Cd > As > Zn > Pb. From the assessment of the potential ecological risk index, the levels were most significant at the three dust generation nodes and in the soil surrounding the tailings reservoir.


Author(s):  
Xin Luo ◽  
Bozhi Ren ◽  
Andrew S. Hursthouse ◽  
Jonathan R. M. Thacker ◽  
Zhenghua Wang

This study assessed the significance and potential impact of potentially toxic element (PTE) (i.e., Mn, Pb, Cu, Zn, Cr, Cd, and Ni) pollution in the surface soil from an abandoned manganese mining area in Xiangtan City, Hunan Province, China, on the health of residents. The risks were sequentially evaluated using a series of protocols including: the geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (RI), and implications for human health from external exposures using the hazard quotient (HQ), hazard index (HI) and carcinogenic risk (CR). The results revealed that Mn and Cd were the major pollutants in the soil samples. The ecological risk assessment identified moderate risks, which were mainly derived from Cd (82.91%). The results of the health risk assessment revealed that generally across the area, the non-carcinogenic risk was insignificant, and the carcinogenic risk was at an acceptable level. However, due to local spatial fluctuation, some of the sites presented a non-carcinogenic risk to children. The soil ingestion pathway is the main route of exposure through both non-carcinogenic and carcinogenic risks, with Mn being the major contributor to non-carcinogenic risk, with Cr and Cd the major contributors to carcinogenic risk. In addition, three pollution sources were identified through the Pearson correlation coefficient and principal component analysis (PCA), which included: a. mining activities and emissions from related transportation; b. natural background; c. agricultural management practices and municipal sewage discharge. The study provides information on the effects of spatial variation for the development of the abandoned mining areas and a useful approach to the prioritization of locations for the development and utilization of soil in these areas in China.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 471
Author(s):  
Inga Zinicovscaia ◽  
Constantin Hramco ◽  
Omari Chaligava ◽  
Nikita Yushin ◽  
Dmitrii Grozdov ◽  
...  

For the second time, the moss biomonitoring technique was applied to evaluate the deposition of potentially toxic elements in the Republic of Moldova. The study was performed in the framework of the International Cooperative Program on Effects of Air Pollution on Natural Vegetation and Crops. Moss Hypnum cupressiforme Hedw. samples were collected in May 2020 from 41 sampling sites distributed over the entire territory of the country. The mass fractions of 35 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Se, Rb, Sr, Sb, Cs, Ba, Cd, La, Ce, Sm, Eu, Tb, Hf, Ta, Th, Pb, and U) were determined using neutron activation analysis and atomic absorption spectrometry. Comparing with 2015/2016 moss survey data, significant differences in the mass fractions of Cr, As, Se, Br, Sr, Sb, Cd, Pb, and Cu were found. Main air pollution sources (natural processes, transport, industry, agriculture, mining) were identified and characterized using factor and correlation analyses. GIS maps were built to point out the zones with the highest element mass fractions and to relate this to the known sources of contamination. Contamination factor, geo-accumulation index, pollution load index, and potential ecological risk index were calculated to assess the air pollution levels in the country. According to the calculated values, Moldova can be characterized as unpolluted to moderately polluted, with low potential ecological risk related to the degree of atmospheric deposition of potentially toxic elements. The cities of Chisinau and Balti were determined to experience particular environmental stress and are considered moderately polluted.


2021 ◽  
Vol 27 (4) ◽  
pp. 210232-0
Author(s):  
Julio Marín ◽  
Marinela Colina ◽  
Hilda Ledo ◽  
P.H.E. Gardiner

The evaluation of potential ecological risk of aquatic sediments associated with the presence of potentially toxic elements (PTE) determines its degree of danger on native biota. In this work, the potential ecological risk of V, Ti, Cr, Ni, Cu, Zn, As, Se, Cd, Sn, Hg and Pb in superficial sediments is explained in three different areas of Lake Maracaibo: El Tablazo Bay, Strait of Maracaibo and the lake itself, through a multi-guideline approach (elemental enrichment (enrichment factor, contamination degree, pollutant load index and geo-accumulation index), sediment quality guidelines and risk assessment code). The PTE levels ranged from < 0.025 to 176.722 mg·kg−1 DW, with an overall proportion of V > Ti > Pb > Zn > Cr > Cu > Ni > As > Cd > Se > Hg > Sn. The PTE concurrent effect on biota was El Tablazo Bay > lake > Strait of Maracaibo. The superficial sediments of Lake Maracaibo constitute a medium with a high potential ecological risk on estuarine biota. This is mainly due to the levels of As in El Tablazo Bay, Cd in the Strait of Maracaibo and Pb in the lake area. This represents a latent toxicity hazard for native biological communities and other associated organisms.


Author(s):  
Jiankang Wang ◽  
Bo Gao ◽  
Shuhua Yin ◽  
Dongyu Xu ◽  
Laisheng Liu ◽  
...  

Simultaneous ecological and health risk assessments of potentially toxic elements in soils and sediments can provide substantial information on their environmental influence at the river-basin scale. Herein, soil and sediment samples were collected from the Guishui River basin to evaluate the pollution situation and the ecological and health risk of potentially toxic elements. Various indexes were utilized for quantitatively assessing their health risks. Pollution assessment by geo-accumulation index showed that Cd had “uncontaminated to moderately polluted” status in the soils and sediments. Potential ecological risk index showed that the Guishui River basin was at low risk in general, but Cd was classified as “moderate or considerable ecological risk” both in the soils and sediments. Health risk assessment calculated human exposure from soils and indicated that both non-carcinogenic and carcinogenic risks of the selected potentially toxic elements were lower than the acceptable levels. Health risks posed by potentially toxic elements bio-accumulated in fish, stemming from sediment resuspension, were also assessed. Non-carcinogenic hazard index indicated no adverse health effects on humans via exposure to sediments; however, in general, Cr contributed largely to health risks among the selected potentially toxic elements. Therefore, special attention needs to be paid to the Guishui River basin in the future.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2020 ◽  
Vol 12 (17) ◽  
pp. 7224 ◽  
Author(s):  
Martin Brtnický ◽  
Václav Pecina ◽  
Tivadar Baltazár ◽  
Michaela Vašinová Galiová ◽  
Ludmila Baláková ◽  
...  

The environmental impacts of air transport and air transportation systems have become increasingly important and are heavily debated. The aim of the study was to determine the degree of soil contamination by the potentially toxic elements (Cu, Ni, Pb, and Zn) in the vicinity of the airport runway and to evaluate whether airport traffic has had factual toxic effects on airport vegetation. The overall assessment of soil contamination by means of the Nemerow integrated pollution index indicated slight pollution; evaluation by the geoaccumulation index evinced moderate contamination by Zn and nonexistent to moderate contamination by Cu, Ni, and Pb. A significant difference between the take-off and landing sections of the runway was not statistically confirmed. The vegetation risk assessment by means of the potential ecological risk index (RI) showed the low ecological risk, while the phytotoxicity test revealed an inhibition of up to 33.7%, with a slight inhibition of 16.7% on average, and thus low toxic effects of airport traffic on airport vegetation. The results of the linear regression model between phytotoxicity and RI manifested no relation between the two. The outcomes from other studies suggest that the range of elements and the extent of contamination can be highly variable at different airports and frequently affected by car traffic. Therefore, further research on this issue is needed for the more precise determination of the elements emitted by air traffic at airports.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1366
Author(s):  
Hyeryeong Jeong ◽  
Jin Young Choi ◽  
Jaesoo Lim ◽  
Kongtae Ra

We examined the pollution characteristics of potentially toxic elements (PTEs) in road dust (RD) from nine industrial areas in South Korea to assess PTE pollution levels and their environmental risks for devising better strategies for managing RD. The median concentrations (mg/kg) were in the order Zn (1407) > Cr (380) > Cu (276) > Pb (260) > Ni (112) > As (15) > Cd (2) > Hg (0.1). The concentration of PTEs was the highest at the Onsan Industrial Complex, where many smelting facilities are located. Our results show that Onsan, Noksan, Changwon, Ulsan, Pohang, and Shihwa industrial areas are heavily polluted with Cu, Zn, Cd, and Pb. The presence of these toxic elements in RD from the impervious layer in industrial areas may have a moderate to severe effect on the health of the biota present in these areas. The potential ecological risk index (Eri) for PTEs was in the decreasing order of Cd > Pb > Hg > Cu > As > Zn > Ni > Cr, indicating that the dominant PTE causing ecological hazards is Cd owing to its high toxicity. Our research suggests the necessity for the urgent introduction of an efficient management strategy to reduce RD, which adds to coastal pollution and affects human health.


2014 ◽  
Vol 651-653 ◽  
pp. 1402-1409
Author(s):  
Gui Ping Xu ◽  
Xiao Fei Wang ◽  
Li Jun Chen

Concentrations of heavy metals in sugarcane soil of Guangxi were determined and the potential ecological risk index was used simultaneously to evaluate the extent of heavy metals enrichment contamination. Results showed that the pollution extent of heavy metals in sugarcane soil by potential ecological risk followed the order: Cd>Pb>Cu>Zn, Cu and Zn were slightly polluted, with small potential ecological harm, while Pb and Cd were above moderately polluted, with heavy potential ecological harm. Principal component analysis was applied to estimate the sources of heavy metals contamination, the results indicated that the first two components accounted for 61.016% and 26.920% of the total variance respectively, 4 kinds of heavy metal elements had similar sources, tailing dam lead-zinc concentrator upstream along the coast was the main sources of heavy metal contamination.


Sign in / Sign up

Export Citation Format

Share Document