scholarly journals Improvement of Small Wind Turbine Control in the Transition Region

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 244
Author(s):  
Mario L. Ruz ◽  
Juan Garrido ◽  
Sergio Fragoso ◽  
Francisco Vazquez

Wind energy conversion systems are very challenging from the control system viewpoint. The control difficulties are even more challenging when wind turbines are able to operate at variable speed and variable pitch. The contribution of this work is focused on designing a combined controller that significantly alleviates the wind transient loads in the power tracking and power regulation modes as well as in the transition zone. In a previous work, the authors studied the applicability of different multivariable decoupling methodologies. The methodologies were tested in simulation and verified experimentally in a lab-scale wind turbine. It was demonstrated that multivariable control strategies achieve a good closed-loop response within the transition region, where the interaction level is greater. Nevertheless, although such controllers showed an acceptable performance in the power tracking (region II) and power regulation (region IV) zones, appreciable improvement was possible. To this end, the new proposed methodology employs a multivariable gain-scheduling controller with a static decoupling network for the transition region and monovariable controllers for the power tracking and power regulation regions. To make the transition between regions smoother, a gain scheduling block is incorporated into the multivariable controller. The proposed controller is experimentally compared with a standard switched controller in the lab-scale wind turbine. The experiments carried out suggest that the combination of the proposed multivariable strategy for the transition region to mitigate wind transient loads combined with two monovariable controllers, one dedicated to region II and other to region IV, provide better results than traditional switched control strategies.

The aim of this chapter is to present an overview of the state of technology and discuss some technology tendency in the Power Electronics (PE) used for Wind Power Applications (WPA). Firstly, technological and commercial developments in wind power generation are generally discussed. Next, the wind turbine concept is illustrated and explained using different types of generator. The control structure of wind-turbines (WTs) is explained using DFIG, Asynchronous and Synchronous Generator (ASG and SG). Finally, the last section focuses on a detailed literature review describing DFIG based wind turbine-generator systems in terms of modeling and control strategies.


2020 ◽  
Vol 2 (1) ◽  
pp. 17-29
Author(s):  
Hamza Mesai Ahmed ◽  
Youcef Djeriri

This paper presents the active and reactive powers control of a doubly fed induction generator (DFIG) connected to the grid utility and driven by a wind turbine, this machine allowing a large speed variation and so a large range of wind is achieved. Traditionally vector control is introduced to the DFIG control strategies, which decouples DFIG active and reactive powers, and reaches good performances in the wind energy conversion systems (WECS). However, this decoupling is lost if the parameters of the DFIG change. In this direction, a robust control scheme based on the nonlinear input-output linearizing and decoupling control strategy for the rotor side converter (RSC) of the WECS is presented. Simulation results show that the proposed control strategy provides a robust decoupled control and perfect tracking of the generated active and reactive powers of the wind turbine driven DFIG with a low THD rate of the generated currents.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 237 ◽  
Author(s):  
Silvio Simani ◽  
Stefano Alvisi ◽  
Mauro Venturini

The interest in the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this end, data-driven control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes of working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Therefore, the paper aims at providing some guidelines on the design and the application of different data-driven control strategies to a wind turbine benchmark and a hydroelectric simulator. They rely on self-tuning PID, fuzzy logic, adaptive and model predictive control methodologies. Some of the considered methods, such as fuzzy and adaptive controllers, were successfully verified on wind turbine systems, and similar advantages may thus derive from their appropriate implementation and application to hydroelectric plants. These issues represent the key features of the work, which provides some details of the implementation of the proposed control strategies to these energy conversion systems. The simulations will highlight that the fuzzy regulators are able to provide good tracking capabilities, which are outperformed by adaptive and model predictive control schemes. The working conditions of the considered processes will be also taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many plants.


Author(s):  
Dr. R. C. Bansal ◽  
Dr. Ahmed F Zobaa ◽  
Dr. R. K. Saket

Design and successful operation of wind energy conversion systems (WECs) is a very complex task and requires the skills of many interdisciplinary skills, e.g., civil, mechanical, electrical and electronics, geography, aerospace, environmental etc. Performance of WECs depends upon subsystems like wind turbine (aerodynamic), gears (mechanical), generator (electrical); whereas the availability of wind resources are governed by the climatic conditions of the region concerned for which wind survey is extremely important to exploit wind energy. This paper presents a number of issues related to the power generation from WECs e.g. factors affecting wind power, their classification, choice of generators, main design considerations in wind turbine design, problems related with grid connections, wind-diesel autonomous hybrid power systems, reactive power control of wind system, environmental aspects of power generation, economics of wind power generation, and latest trend of wind power generation from off shore sites.


Author(s):  
Silvio Simani ◽  
Stefano Alvisi ◽  
Mauro Venturini

The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, data--driven control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods, such as fuzzy and adaptive self--tuning controllers, were already verified on wind turbine systems, and similar advantages may thus derive from their appropriate implementation and application to hydroelectric plants. These issues represent the key features of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. The working conditions of these systems will be also taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.


Sign in / Sign up

Export Citation Format

Share Document