scholarly journals Near-Null Geomagnetic Field as an Innovative Method of Fruit Storage

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 262
Author(s):  
Grzegorz Zaguła ◽  
Maria Tarapatskyy ◽  
Marcin Bajcar ◽  
Bogdan Saletnik ◽  
Czesław Puchalski ◽  
...  

The article presents the findings of a study investigating the effects of storing Jonagold apples for six weeks in a condition in which the vertical component of the geomagnetic field has been eliminated (near null GMF) and in control conditions representing those applied in traditional storage (i.e., in the local geomagnetic field (local GMF)). Analyses of the fruit were performed before the start of and three times during the experiment (i.e., following four, five and six weeks in storage). The contents of simple sugars were measured using the HPLC (high performance liquid chromatography) method; refractometry was applied to identify total extract; thermogravimetry was used to measure the water content, volatile substances and total ash; calorific value and intensity of respiration were examined by measuring CO2 emissions. Significant differences were found between the apples stored in the experimental and under control conditions, showing an advantage of storage in a condition with the vertical component of the geomagnetic field removed. Statistically significant differences were mainly identified in the speed of starch conversion into simple sugars, as well as the intensity of respiration and the appearance of the two groups of apples. Storage of fruit in a compensated geomagnetic field proved to be an effective method permitting an extended duration of storage without significant deterioration of the physicochemical and organoleptic properties of apples.

Author(s):  
Raju Chandra ◽  
Manisha Pant ◽  
Harchan Singh ◽  
Deepak Kumar ◽  
Ashwani Sanghi

A reliable and reproducible reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the quantitative determination of Remipril drug content from marketed bulk tablets. The active ingredient of Remipril separation achieved with C18 column using the methanol water mobile phase in the ratio of 40:60 (v/v). The active ingredient of the drug content quantify with UV detector at 215 nm. The retention time of Remipril is 5.63 min. A good linearity relation (R2=0.999) was obtained between drug concentration and average peak areas. The limit of detection and limit of quantification of the instrument were calculated 0.03 and 0.09 µg/mL, respectively. The accuracy of the method validation was determined 102.72% by recoveries method.


2020 ◽  
Vol 20 (13) ◽  
pp. 1053-1059
Author(s):  
Mahmoud M. Sebaiy ◽  
Noha I. Ziedan

Background: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.


Sign in / Sign up

Export Citation Format

Share Document