scholarly journals Melt Stable Functionalized Organosolv and Kraft Lignin Thermoplastic

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1108
Author(s):  
Shubhankar Bhattacharyya ◽  
Leonidas Matsakas ◽  
Ulrika Rova ◽  
Paul Christakopoulos

A shift towards an economically viable biomass biorefinery concept requires the use of all biomass fractions (cellulose, hemicellulose, and lignin) for the production of high added-value products. As lignin is often underutilized, the establishment of lignin valorization routes is highly important. In-house produced organosolv as well as commercial Kraft lignin were used in this study. The aim of the current work was to make a comparative study of thermoplastic biomaterials from two different types of lignins. Native lignins were alkylate with two different alkyl iodides to produce ether-functionalized lignins. Successful etherification was verified by FT-IR spectroscopy, changes in the molecular weight of lignin, as well as 13C and 1H Nuclear Magnetic Resonance (NMR). The thermal stability of etherified lignin samples was considerably improved with the T2% of organosolv to increase from 143 °C to up to 213 °C and of Kraft lignin from 133 °C to up to 168 °C, and glass transition temperature was observed. The present study shows that etherification of both organosolv and Kraft lignin with alkyl halides can produce lignin thermoplastic biomaterials with low glass transition temperature. The length of the alkyl chain affects thermal stability as well as other thermal properties.

2017 ◽  
Vol 19 (3) ◽  
pp. 16-19 ◽  
Author(s):  
Puyou Jia ◽  
Rui Wang ◽  
Lihong Hu ◽  
Meng Zhang ◽  
Yonghong Zhou

Abstract Modified PVC (M-PVC) material with suppressed migration and low glass transition temperature was prepared via click reaction of a monooctyl phthalate derivative. Chemical structure and composition of M-PVC were characterized by FT-IR, 1H NMR and element analysis. Thermal stability, glass transition temperature and migration stability of M-PVC were studied with TGA, DSC and migration tests, respectively. The study showed that M-PVC exhibited poor thermal stability, and low glass transition temperature of 66.0°C. No migration was found in distilled water, 10% (v/v) ethanol, 30% (w/v)acetic acid and petroleum ether. The PVC material is expected to preparing PVC products in the areas with high migration resistance requirement.


Author(s):  
Takahisa Omata ◽  
Aman Sharma ◽  
Takuya Kinoshita ◽  
Issei Suzuki ◽  
Tomohiro Ishiyama ◽  
...  

In this study, the effect of GeO2 on the thermal stability and proton mobility (μH) of proton-conducting phosphate glasses was experimentally investigated using 22HO1/2−3NaO1/2−(12−x)LaO3/2−xGeO2−63PO5/2 glasses. Increasing glass transition temperature (Tg)...


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000196-000200 ◽  
Author(s):  
Kenji Okamoto ◽  
Yuji Takematsu ◽  
Miyako Hitomi ◽  
Yoshinari Ikeda ◽  
Yoshikazu Takahashi

There is a demand to improve the thermal stability of epoxy molding resins used in the power module of SiC power chips operating at temperatures of 200°C or more. This paper describes a technique for increasing the thermal stability of the resin by decreasing molecular motion through the addition of nanofiller. The experimental results showed that the glass transition temperature (Tg) of the epoxy resin increased by approximately 30°C when the silica nanofiller was added. The epoxy resin added nanofiller was investigated in order to achieve the operation temperature 200°C of power module.


1999 ◽  
Vol 598 ◽  
Author(s):  
Lixin Zheng ◽  
Xuezhong Jiang ◽  
Michelle S. Liu ◽  
Alex K-Y. Jen

ABSTRACTNovel conjugated light-emitting polymers were synthesized via a Wittig-Horner condensation reaction between a binaphthyl dicarbaldehyde and a series of electron-rich or electron-deficient aryl diphosphonates. After comparing these materials with the model compound, 4c, it was revealed that the introduction of a twisted, non-coplanar binaphthyl structure provided an effective approach for tailoring the spectral characteristics of the polymers and improving their solubility and thermal stability (glass transition temperature, Tg, 200°C). Furthermore, the band structures of the polymers could be fine-tuned by changing the electronic properties of the bridging aromatic units. The electroluninescence (EL) and device characteristics were also reported in this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Krzysztof Lewandowski ◽  
Katarzyna Skórczewska ◽  
Kazimierz Piszczek ◽  
Włodzimierz Urbaniak

This paper presents the method of using glass fibre with carbon deposit (GFCD), derived from the recycling of wind turbine blades, for production of composite materials based on poly(vinyl chloride) (PVC). Composite materials containing from 1 to 15 wt% of GFCD were produced by plasticising with a plastographometer and then by pressing. The processability and performance were studied. Mechanical properties in static tension, impact strength, and thermal stability were determined. Glass transition temperature was also determined by means of the dynamic mechanical thermal analysis (DMTA). The GFCD percentage of up to 15 wt% was found not to slightly affect the change in the processability, thermal stability, and glass transition temperature. PVC/GFCD composite materials are characterised by a definitely greater elastic modulus with simultaneous decrease of tensile strength and impact strength. An analysis with scanning electron microscopy revealed good adhesion between the filler and the polymer matrix.


2016 ◽  
Vol 29 (2) ◽  
pp. 141-150 ◽  
Author(s):  
K Ilango ◽  
P Prabunathan ◽  
E Satheeshkumar ◽  
P Manohar

In this present work, porous mullites (PM0–5) were synthesized through a template-assisted method using various weight percentages of pluronic (P-123). PM5 obtained using 10 wt% of P-123 was found to show maximum porosity (3.8 Å) and low dielectric constant value (2.4). PM5 was functionalized using glycidyl-terminated silane and denoted as FPM and various weight percentages of FPM were reinforced with polybenzoxazine (PBZ) matrix in order to develop FPM/PBZ nanocomposites. The thermal studies indicate that 1.5 wt% of FPM/PBZ nanocomposite showed improved thermal stability with 34% char yield at 800°C and 162°C as glass transition temperature. It also exhibits low dielectric constant (2.6) than that of the neat PBZ matrix and other FPM/PBZ nanocomposites. The microscopic analysis confirms the homogenous dispersion of FPM into the PBZ polymer that has a porous morphology. The results suggest that the as-synthesized mesoporous mullite with low dielectric constant ( k), synthesized via template-assisted method can be used as a reinforcement to decrease the dielectric constant of polymeric material, which is of industrial significance.


2017 ◽  
Vol 896 ◽  
pp. 62-71 ◽  
Author(s):  
Bai Li Chen ◽  
Chuan Qun Huang ◽  
Rui Zhuang Yang ◽  
Yu Fang ◽  
Qing Jun Zhang ◽  
...  

2,5-dimethyl-(4-p-nitrophenylazo) phenetole (DMNPAPE) was synthesized. And its structure was confirmed with ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The photorefractive composite consist of 33 wt % poly (N-vinycarbazole) (PVK), 50 wt % 2, 5-dimethyl-(4-p-nitrophenylazo) phenetole (DMNPAPE) and 16 wt % ethyl carbazole (ECZ) doped with x wt % (≤1 wt%) [6, 6]-phenyl C61 butyric acid methyl ester (PCBM) was fabricated. The influence of PCBM on the glass transition temperature (Tg) of the photorefractive composite was studied using a differential scanning calorimetric (DSC) method. The active energy of glass transition (Eg) was evaluated by Kissinger’s and Moynihan’s relation. The analysis results indicate that the transition region shifts to higher temperatures with the increasing heating rate, and PCBM content (≤1.0 wt %) can influence Tg of PVK - based PR composite polymers. The Tg first increase and then went down with the PCBM content (below 1.0 wt %) increasing. The possible cause of the influence of PCBM on Tg was proposed.


2010 ◽  
Vol 58 (17) ◽  
pp. 9549-9555 ◽  
Author(s):  
Naresh K. Budhavaram ◽  
Jonathan A. Miller ◽  
Ying Shen ◽  
Justin R. Barone

Sign in / Sign up

Export Citation Format

Share Document