scholarly journals Iron-Based Catalytically Active Complexes in Preparation of Functional Materials

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1683
Author(s):  
Katarzyna Rydel-Ciszek ◽  
Tomasz Pacześniak ◽  
Izabela Zaborniak ◽  
Paweł Błoniarz ◽  
Karolina Surmacz ◽  
...  

Iron complexes are particularly interesting as catalyst systems over the other transition metals (including noble metals) due to iron’s high natural abundance and mediation in important biological processes, therefore making them non-toxic, cost-effective, and biocompatible. Both homogeneous and heterogeneous catalysis mediated by iron as a transition metal have found applications in many industries, including oxidation, C-C bond formation, hydrocarboxylation and dehydration, hydrogenation and reduction reactions of low molecular weight molecules. These processes provided substrates for industrial-scale use, e.g., switchable materials, sustainable and scalable energy storage technologies, drugs for the treatment of cancer, and high molecular weight polymer materials with a predetermined structure through controlled radical polymerization techniques. This review provides a detailed statement of the utilization of homogeneous and heterogeneous iron-based catalysts for the synthesis of both low and high molecular weight molecules with versatile use, focusing on receiving functional materials with high potential for industrial application.

2014 ◽  
Vol 89 (6) ◽  
Author(s):  
Xiaoyuan Sheng ◽  
Frédéric Wintzenrieth ◽  
Katherine R. Thomas ◽  
Ullrich Steiner

1987 ◽  
Vol 65 (5) ◽  
pp. 414-422 ◽  
Author(s):  
Eleonora Altman ◽  
Jean-Robert Brisson ◽  
Malcolm B. Perry

The capsular polysaccharide of Haemophilus pleuropneumoniae serotype 2 (ATCC 27089) is composed of D-glucose (two parts), D-galactose (one part), glycerol (one part), and phosphate (one part). Hydrolysis, dephosphorylation, methylation, enzymic studies, and 1H and 13C nuclear magnetic resonance experiments showed that the polysaccharide is a high molecular weight polymer of a tetrasaccharide repeating units, linked by monophosphate diester and having the following structure:[Formula: see text]


1985 ◽  
Vol 162 (2) ◽  
pp. 768-773 ◽  
Author(s):  
R F Siliciano ◽  
R M Colello ◽  
A D Keegan ◽  
R Z Dintzis ◽  
H M Dintzis ◽  
...  

We have shown that cytotoxic T cell clones specific for the nominal antigen FL will bind high molecular weight (600,000 to 2,000,000) polyacrylamide and Ficoll polymers conjugated with 200-600 FL groups per molecule. Low molecular weight polymers (40,000) with the same epitope density did not give stable binding. A high molecular weight polymer with a lower epitope density also failed to bind. Taken together, these results suggest that a substantial degree of multivalence is a necessary factor in the stable binding of nominal antigen to T cell clones.


Sign in / Sign up

Export Citation Format

Share Document