scholarly journals Toxicity of Essential Oils Nanoemulsion against Aphis Craccivora and Their Inhibitory Activity on Insect Enzymes

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 624
Author(s):  
Khaled Abdelaal ◽  
Mamdouh Essawy ◽  
Attia Quraytam ◽  
Fahmy Abdallah ◽  
Heba Mostafa ◽  
...  

Essential oils are widely used as botanical insecticides rather than chemically synthesized pesticides which led to catastrophic effects on humans, the environment, and eutrophication. Here, encapsulation of four essential oils Basilicum ocimum, Cuminum cyminum, Origanum marjorana, and Matricaria chamomilla were utilized in the presence of 3% v/v ethanol, as anti-insect against Aphis craccivora and compared to traditional insecticides dinotefuran and pymetrozine. Different tools were used to characterize the prepared nanoemulsion such as TEM, SEM, and Zeta potential analyzer. Besides, selected B. ocimum and C. cyminum were analyzed by gas chromatography-mass GC/mass spectrometry. The results reveal that nanoemulsion exhibited considerable toxic activities against laboratory and field strains of cowpea aphid. In the toxicity bioassay test of essential oils, moderate mortality was observed at 10,000 mg/L against aphid with lethal concentration that kills 50% of insects (LC50) values of basil 992 mg/L and marjoram 3162 mg/L. Else, nanoemulsion provided the highest mortality rate at 625 mg/L and the LC50 values of basil nanoemulsion (NE) 45 mg/L, and marjoram NE 188 mg/L in laboratory strains. The systemic effects of the tested substances acetylcholine esterase, alkaline phosphatase, β-esterases, glutathione S-transferase (GST), and mixed-function oxidase (MFO) enzymes on insects were found to be significantly decreased and increased when compared with control groups. Overall, these results highlight that the nanoemulsion is potential tools to control cowpea aphid and could be useful in developing integrated insect management in faba bean fields.

2016 ◽  
Vol 56 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Ibrahim Saleh Abdallah ◽  
Hala Mohamed Abou-Yousef ◽  
Eman Atef Fouad ◽  
Mohammed Abd El-Hady Kandil

Abstract The cowpea aphid (Aphis craccivora Koch) is considered a serious insect pest attacking several crops. We carried out biochemical studies to elucidate the role of the metabolising enzymes in conferring resistance to thiamethoxam, in two strains (resistant and susceptible) of the cowpea aphid. Bioassay experiments showed that the thiamethoxam selected strain developed a 48 fold resistance after consecutive selection with thiamethoxam for 12 generations. This resistant strain also exhibited cross-resistance to the tested carbamates; pirimicarb and carbosulfan, organophosphorus (malathion, fenitrothion, and chlorpyrifos-methyl), and the neonicotinoid (acetamiprid). Synergism studies have indicated that S,S,S-tributyl phosphorotrithioate (DEF), a known inhibitor for esterases, increased thiamethoxam toxicity 5.58 times in the resistant strain compared with the susceptible strain. Moreover, the biochemical determination revealed that carboxylestersae activity was 30 times greater in the resistant strain than in the susceptible strain. In addition, the enzyme activity of glutathione S-transferase (GST) and mixed function oxidases (mfo) increased only in the resistant strain 3.7 and 2.7 times, respectively, in relation to the susceptible (the control). Generally, our results suggest that the higher activity of the detoxifying enzymes, particularly carboxylesterase, in the resistant strain of the cowpea aphid, apparently have a significant role in endowing resistance to thiamethoxam, although additional mechanisms may contribute.


2017 ◽  
Vol 57 (3) ◽  
pp. 275-280
Author(s):  
El-Sayed Mohammad Soliman Mokbel ◽  
Eman Saed Hassan Swelam ◽  
Eman Mohamed Mostafa Radwan ◽  
Mohammed Abd-Elhady Kandil

AbstractThe cowpea aphid,Aphis craccivoramanagement relies mainly on chemical control. As a result extensive and repeated treatment of insecticides has led to the development of aphid resistance to commonly used insecticides. To investigate chlorpyrifos-methyl resistance inA. craccivora, a field strain was selected for 24-generations to achieve a resistance factor of 82.3 fold compared with a susceptible strain. In the resistant strain, malathion and lambda-cyhalothrin exhibited obvious cross-resistance; while fenvalerate and dinotefuran showed moderate cross-resistance. In contrast, slight or no cross-resistance was obtained with the other tested insecticides. To investigate metabolic resistance mechanisms, integration of biochemical and synergism assays was conducted. Results showed the key role of esterase (EST) and mixed function oxidases (MFO); however, glutathione-s-transferase (GST) contributed less to resistance. Cross-resistance studies showed the need for rotation with non-cross resistant insecticides as a resistance management tactic.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


Sign in / Sign up

Export Citation Format

Share Document