scholarly journals Measuring and Modeling the Solubility of Hydrogen Sulfide in rFeCl3/[bmim]Cl

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 652
Author(s):  
Huanong Cheng ◽  
Na Li ◽  
Rui Zhang ◽  
Ning Wang ◽  
Yuanyuan Yang ◽  
...  

The solubility of hydrogen sulfide in different mole ratios of ferric chloride and 1-butyl-3-methylimidazolium chloride ionic liquid (rFeCl3/[bmim]Cl, r = 0.6, 0.8, 1.0, 1.2, 1.4) at temperatures of 303.15 to 348.15 K and pressures of 100 to 1000 kPa was determined. The total solubility increased with the increase of pressure and the decrease of temperature. The solubility data were fitted using the reaction equilibrium thermodynamic model (RETM). The mean relative error between the predicted value and the measured value was less than 4%. Henry’s coefficient and the equilibrium constant of chemical reaction at each temperature were calculated. Henry’s coefficient first decreased and then increased with the increase of mole ratio, and increased with the increase of temperature. The equilibrium constant of the chemical reaction followed the same law as Henry’s coefficient. The chemical solubility was related to both Henry’s coefficient and the chemical equilibrium constant. H2S had the highest chemical solubility in FeCl3/[bmim]Cl at a mole ratio of 0.6 and a temperature of 333.15 K. The chemical solubility increased with the increase of pressure.

2021 ◽  
pp. 254-275
Author(s):  
Christopher O. Oriakhi

Chemical Equilibrium reviews the principles of equilibrium in systems of gases and liquids, starting with the concepts of reversible and irreversible reactions and dynamic equilibrium. The equilibrium constant (K) and reaction quotient (Q) are described, and comparison of K and Q is used to determine the direction in which a reaction must proceed to reach equilibrium. Calculations involving K in terms of concentration and pressure are presented. The relationship between the magnitude of K, the equilibrium position and the concentrations of reactants and products is discussed for both homogeneous and heterogeneous equilibria. The chapter ends with a qualitative treatment of equilibrium based on Le Chatelier’s principle, as well as how changes in reaction conditions can disturb a chemical equilibrium and how the chemical reaction responds to those changes.


1980 ◽  
Vol 45 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Milan Šolc

The establishment of chemical equilibrium in a system with a reversible first order reaction is characterized in terms of the distribution of first passage times for the state of exact chemical equilibrium. The mean first passage time of this state is a linear function of the logarithm of the total number of particles in the system. The equilibrium fluctuations of composition in the system are characterized by the distribution of the recurrence times for the state of exact chemical equilibrium. The mean recurrence time is inversely proportional to the square root of the total number of particles in the system.


1981 ◽  
Vol 46 (2) ◽  
pp. 452-456
Author(s):  
Milan Šolc

The successive time derivatives of relative entropy and entropy production for a system with a reversible first-order reaction alternate in sign. It is proved that the relative entropy for reactions with an equilibrium constant smaller than or equal to one is completely monotonic in the whole definition interval, and for reactions with an equilibrium constant larger than one this function is completely monotonic at the beginning of the reaction and near to equilibrium.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


1991 ◽  
Vol 233 ◽  
pp. 211-242 ◽  
Author(s):  
R. W. Bilger ◽  
L. R. Saetran ◽  
L. V. Krishnamoorthy

Reaction in a scalar mixing layer in grid-generated turbulence is studied experimentally by doping half of the flow with nitric oxide and the other half with ozone. The flow conditions and concentrations are such that the chemical reaction is passive and the flow and chemical timescales are of the same order. Conserved scalar theory for such flows is outlined and further developed; it is used as a basis for presentation of the experimental results. Continuous measurements of concentration are limited in their spatial and temporal resolution but capture sufficient of their spectra for adequate second-order correlations to be made. Two components of velocity have been measured simultaneously with hot-wire anemometry. Conserved scalar mixing results, deduced from reacting and non-reacting measurements of concentration, show the independence of concentration level and concentration ratio expected for passive reacting flow. The results are subject to several limitations due to the necessary experimental compromises, but they agree generally with measurements made in thermal mixing layers. Reactive scalar statistics are consistent with the realizability constraints obtainable from conserved scalar theory where such constraints apply, and otherwise are generally found to lie between the conserved scalar theory limits for frozen and very fast chemistry. It is suggested that Toor's (1969) closure for the mean chemical reaction rate could be improved by interpolating between the frozen and equilibrium values for the covariance. The turbulent fluxes of the reactive scalars are found to approximately obey the gradient model but the value of the diffusivity is found to depend on the Damköhler number.


Author(s):  
Bernardo Carreón-Calderón ◽  
Verónica Uribe-Vargas ◽  
Juan Pablo Aguayo

Sign in / Sign up

Export Citation Format

Share Document