scholarly journals Effect of Vertical Permeability Heterogeneity in Stratified Formation on Electricity Generation Performance of Enhanced Geothermal System

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 744
Author(s):  
Yuchao Zeng ◽  
Fangdi Sun ◽  
Haizhen Zhai

Because geologic sedimentation and hydrofracturing processes are not homogeneous, the reservoirs of enhanced geothermal systems (EGSs) are also heterogeneous; this has a significant influence on the electricity generation performance of EGS. Presently, there are a lack of systematic and profound studies on the effect of vertical permeability heterogeneity in stratified formation on the electricity generation performance of EGS. In order to uncover the effect of vertical permeability heterogeneity on electricity generation performance of EGS, in this work we analyzed the influence of vertical permeability heterogeneity on electricity generation performance of EGS through a numerical method based on geological data at the Yangbajing geothermal field. The results indicate that when the average permeability of stratified formations is constant for a homogeneous reservoir, the system attains maximum water production rate, maximum electric power, minimum reservoir impedance and maximum pump power; with the increasing of the vertical permeability heterogeneity, the water production rate gradually decreases, the electric power gradually declines, the reservoir impedance gradually increases and the pump power gradually declines. When the average permeability of stratified formations is constant, with the increasing of the vertical permeability heterogeneity, the injection pressure and energy efficiency only changes very slightly; this indicates that the vertical permeability heterogeneity is not the main factor affecting the system injection pressure and energy efficiency.

Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 202 ◽  
Author(s):  
Yuchao Zeng ◽  
Liansheng Tang ◽  
Nengyou Wu ◽  
Jing Song ◽  
Zhanlun Zhao

The enhanced geothermal system (EGS) reservoir consists of a heterogeneous fracture network and rock matrix, and the heterogeneity of the reservoir has a significant influence on the system’s electricity generation performance. In this study, we numerically investigated the influence of reservoir heterogeneity on system production performance based on geological data from the Gonghe Basin geothermal field, and analyzed the main factors affecting production performance. The results show that with the increase of reservoir heterogeneity, the water conduction ability of the reservoir gradually reduces, the water production rate slowly decreases, and this causes the electric power to gradually reduce, the reservoir impedance to gradually increase, the pump power to gradually decrease and the energy efficiency to gradually increase. The fracture spacing, well spacing and injection temperature all have a significant influence on electricity generation performance. Increasing the fracture spacing will significantly reduce electric power, while having only a very slight effect on reservoir impedance and pump power, thus significantly decreasing energy efficiency. Increasing the well spacing will significantly increase the electric power, while having only a very slight effect on the reservoir impedance and pump power, thus significantly increasing energy efficiency. Increasing the injection temperature will obviously reduce the electric power, decrease the reservoir impedance and pump power, and thus reduce energy efficiency.


2020 ◽  
Author(s):  
Youssef Moulane ◽  
Emmanuel Jehin ◽  
Francisco José Pozuelos ◽  
Jean Manfroid ◽  
Zouhair Benkhaldoun ◽  
...  

<p>Long Period Comets (LPCs) have orbital periods longer than 200 years, perturbed from their resting place in the Oort cloud. Such gravitational influences may send these icy bodies on a path towards the center of the Solar system in highly elliptical orbits. In this work, we present the activity and composition evolution of several LPCs observed with both TRAPPIST telescopes (TS and TN) during the period of 2019-2020. These comets include: C/2017 T2 (PANSTARRS), C/2018 Y1 (Iwamoto), C/2018 W2 (Africano), and disintegrated comet C/2019 Y4 (ATLAS). We monitored the OH, NH, CN, C<sub>2</sub> and C<sub>3</sub> production rates evolution and their chemical mixing ratios with respect to their distances to the Sun as well as the dust production rate proxy (A(0)fp) during the journey of these comets into the inner Solar system.</p> <p><strong>C/2017 T2 (PANSTARRS)</strong> is a very bright comet which was discovered on October 2, 2017 when it was 9.20 au from the Sun. We started observing this comet with TS at the beginning of August 2019 when it was at 3.70 au. The comet made the closest approach to the Earth on December 28, 2019 at a distance of 1.52 au and it passed the perihelion on May 4, 2020 at 1.61 au. The water production rate of the comet reached a maximum of (4,27±0,12)10<sup>28 </sup>molecules/s and its dust production rate (A(0)fp(RC)) also reached the peak of 5110±25 cm on January 26, 2020, when the comet was at 2.08 au from the Sun (-100 days pre-perihelion). At the time of writing, we still monitoring the activity of the comet with TN at heliocentric distance of 1.70 au. Our observations show that C/2017 T2 is a normal LPC.</p> <p><strong>C/2018 Y1 (Iwamoto)</strong> is a nearly parabolic comet with a retrograde orbit discovered on December 18, 2018 by Japanese amateur astronomer Masayuki Iwamoto. We monitored the activity and composition of Iwamoto with both TN and TS telescopes from January to March 2019. The comet reached its maximum activity on January 29, 2019 when it was at 1.29 au from the Sun (-8 days pre-perihelion) with Q(H<sub>2</sub>O)=(1,68±0,05)10<sup>28 </sup>molecules/s and A(0)fp(RC)= 92±5 cm. These measurements show that it was a dust-poor comet compared to the typical LPCs.</p> <p><strong>C/2018 W2 (Africano) </strong>was discovered on November 27, 2018 at Mount Lemmon Survey with a visual magnitude of 20. The comet reached its perihelion on September 6, 2019 when it was at 1.45 au from the Sun. We monitored the comet from July 2019 (r<sub>h</sub>=1.71 au) to January 2020 (r<sub>h</sub>=2.18 au) with both TN and TS telescopes. The comet reached its maximum activity on September 21, 15 days post-perihelion (r<sub>h</sub>=1.47 au) with Q(H<sub>2</sub>O)=(0,40±0,03)10<sup>28 </sup>molecules/s.</p> <p><strong>C/2019 Y4 (ATLAS)</strong> is a comet with a nearly parabolic orbit discovered on December 18, 2019 by the ATLAS survey. We started to follow its activity and composition with broad- and narrow-band filters with the TN telescope on February 22, 2019 when it was at 1.32 au from the Sun until May 3, 2020 when the comet was at a heliocentric distance of 0.90 au inbound. The comet activity reached a maximum on March 22 (r<sub>h</sub>=1.65 au) 70 days before perihelion. At that time, the water-production rate reached (1,53±0,04)10<sup>28 </sup>molecules/s and the A(0)fp reached (1096±14) cm in the red filter. After that, the comet began to fade and disintegrated into several fragments.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guangfu Cao ◽  
Qingfen Ma ◽  
Jingru Li ◽  
Shenghui Wang ◽  
Chengpeng Wang ◽  
...  

A Bubbling and Vacuum-enhanced direct contact membrane distillation (BVDCMD) is proposed to improve the water production rate of the direct contact membrane distillation (DCMD-)based seawater desalination process. Its heat and mass transfer mechanism are theoretically analyzed, and a CFD model is established, which is verified by the published data. Four types of the noncondensable gas, “O2,” “air,” “N2,” and “H2,” are adopted as the bubbling gas, and their process enhancements under different pressure of permeate side, temperature, and NaCl concentration of feed side and flow velocities are investigated. The results show that the permeate flux increased remarkably with the decrease in the viscosity of the bubbling gas, and hence, “H2” is the best option for the bubbling gas, with the permeate flux being enhanced by 144.11% and the effective heat consumption being increased by 20.81% on average. The effective water production rate of BVDCMD is predicted to be 42.38% more than that of DCMD, proving its feasibility in the seawater desalination.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1474
Author(s):  
Yuchao Zeng ◽  
Fangdi Sun ◽  
Haizhen Zhai

The energy efficiency of the enhanced geothermal system (EGS) measures the economic value of the heat production and electricity generation, and it is a key indicator of system production performance. Presently there is no systematic study on the influence of well layout on the system energy efficiency. In this work we numerically analyzed the main factors affecting the energy efficiency of EGS using the TOUGH2-EOS1 codes at Gonghe Basin geothermal field, Qinghai province. The results show that for the reservoirs of the same size, the electric power of the three horizontal well system is higher than that of the five vertical well system, and the electric power of the five vertical well system is higher than that of the three vertical well system. The energy efficiency of the three horizontal well system is higher than that of the five vertical well system and the three vertical well system. The reservoir impedance of the three horizontal well system is lower than that of the three vertical well system, and the reservoir impedance of the three vertical well system is lower than that of the five vertical system. The sensitivity analysis shows that well spacing has an obvious impact on the electricity production performance; decreasing well spacing will reduce the electric power, reduce the energy efficiency and only have very slight influence on the reservoir impedance. Fracture spacing has an obvious impact on the electricity production performance; increasing fracture spacing will reduce the electric power and reduce the energy efficiency. Fracture permeability has an obvious impact on the electricity production performance; increasing fracture permeability will improve the energy efficiency and reduce the reservoir impedance.


2020 ◽  
Vol 8 (41) ◽  
pp. 21771-21779
Author(s):  
Jiaxiang Ma ◽  
Yu Han ◽  
Ying Xu ◽  
Tao Zhang ◽  
Jingjing Zhang ◽  
...  

An integrated photo-electro-thermal evaporation system uses a simple preparation process successfully achieves the improvement of water production rate in the day and continuous water evaporation at night.


Icarus ◽  
2013 ◽  
Vol 225 (1) ◽  
pp. 740-748 ◽  
Author(s):  
M.R. Combi ◽  
J.T.T. Mäkinen ◽  
J.-L. Bertaux ◽  
E. Quémerais ◽  
S. Ferron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document