scholarly journals Effect of a Baffle on Bubble Distribution in a Bubbling Fluidized Bed

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1150
Author(s):  
Xuelian Xing ◽  
Chao Zhang ◽  
Bin Jiang ◽  
Yongli Sun ◽  
Luhong Zhang ◽  
...  

In this study, the multi-phase Eulerian–Eulerian two-fluid method (TFM) coupled with the kinetic theory of granular flow (KTGF) was used to investigate the hydrodynamics of particle flows (Geldart Group B) in a lab-scale bubbling fluidized bed. The goal was to improve the bubble flow behavior inside the fluidized bed to improve the distribution of an injected liquid, by increasing the flow of bubbles entering the spray jet cavity and, thus, reduce the formation of wet agglomerates. The effects of a baffle on both the injection level and the whole fluidized bed were studied. Different baffle geometries were also investigated. Adding a fluxtube to a baffle can improve the bubble flows and a long fluxtube works best at redirecting gas bubbles. Baffles tend to smooth out variations in the gas distribution caused by the non-uniform inlet gas distribution. A gas pocket appears under all the baffles.

2015 ◽  
Vol 284 ◽  
pp. 159-169 ◽  
Author(s):  
Shailesh S. Ozarkar ◽  
Xiaokang Yan ◽  
Shuyan Wang ◽  
Christian C. Milioli ◽  
Fernando E. Milioli ◽  
...  

2018 ◽  
Vol 338 ◽  
pp. 664-676 ◽  
Author(s):  
Wang Lin ◽  
Qi Guoli ◽  
Li Zhenjie ◽  
Liu Songsong ◽  
Muhammad Hassan ◽  
...  

2016 ◽  
Vol 55 (17) ◽  
pp. 5063-5077 ◽  
Author(s):  
Musango Lungu ◽  
Haotong Wang ◽  
Jingdai Wang ◽  
Yongrong Yang ◽  
Fengqiu Chen

2011 ◽  
Vol 236-238 ◽  
pp. 1537-1545
Author(s):  
Wen Jing Liu ◽  
Hui Zhao ◽  
Chao He Yang ◽  
Hong Hong Shan

In fixed-fluidized bed reactor, laboratory evaluation of different catalyst, raw materials and process parameters can be implemented, so it has wide applications in the refining process. In this study, we focused on small fixed-fluidized bed reactor, using Eulerian-Eulerian two-fluid model, simulated the gas-solid flow behavior in it. Gas residence time distribution was measured in order to characterize macro-mixing. At the same time, by changing the reactor structure and operating conditions, we studied their effects on gas-solid macro-mixing characterization. The results show that the effects of structural parameters are larger than operating conditions, and different parameters have different effects. Different parameters can be adjusted to change the gas-solid macro-mixing characterization in small fixed-fluidized bed reactor. Therefore, the small fixed-fluidized bed reactor can provide better results in more application areas.


2010 ◽  
Vol 24 (5) ◽  
pp. 3159-3172 ◽  
Author(s):  
Baosheng Jin ◽  
Xiaofang Wang ◽  
Wenqi Zhong ◽  
He Tao ◽  
Bing Ren ◽  
...  

2014 ◽  
Vol 699 ◽  
pp. 660-665
Author(s):  
M. Fadhil ◽  
M.S. Aris ◽  
A.H. Abbas ◽  
A.B.A. Ibrahim ◽  
N. Aniza

Research on the thermodynamic behavior of sand beds was carried out using a commercial computational dynamic package. The work involved simulating, with the use of the Ergun equation, the air flow through a two-dimensional bubbling bed reactor to predict the bed character whilst considering the major effective function (particle size, particle density, bed height and reactor width). The Minimum Fluidization Velocity (Umf) values were then calculated before the optimum value of Umfneeded to ensure a workable Bubbling Fluidize Bed Combustor (BFBC) system. The effects of using different Umfvalues on the flow behavior were also investigated using the numerical approach at different times. The results from these investigations indicate that the bubbling region in the fluidized bed combustion can be correlated to the sand bed expansion with minimum errors and assist in enhancing the combustion efficiency by supplying the required volume of oxygen into the system.


Author(s):  
Tian Tian ◽  
Zhengrui Jia ◽  
Shujun Geng ◽  
Xiaoxing Liu

AbstractIn this work the influences of solid viscosity and the way to scale-down traditional drag models on the predicted hydrodynamics of Geldart A particles in a lab-scale gas-solid bubbling fluidized bed are investigated. To evaluate the effects of drag models, the modified Gibilaro et al. drag model (constant correction factor) and the EMMS drag model (non-constant correction factor) are tested. And the influences of solid viscosity are assessed by considering the empirical model proposed by Gidaspow et al. (1997, Turbulence, Viscosity and Numerical Simulation of FCC Particles in CFB. Fluidization and Fluid-particle Systems, AIChE Annual Meeting, Los Angeles, 58–62) and the models based on kinetic theory of granular flow (KTGF) with or without frictional stress. The resulting hydrodynamics by incorporating the different combinations of the drag model and solid viscosity model into two-fluid model (TFM) simulations are compared with the experimental data of Zhu et al. (2008, Detailed Measurements of Flow Structure inside a Dense Gas-Solids Fluidized Bed.”Powder Technological180:339–349). The simulation results show that the predicted hydrodynamics closely depends on the setting of solid viscosity. When solid viscosity is calculated from the empirical model of Gidaspow et al., both drag models can reasonably predict the radial solid concentration profiles and particle velocity profiles. When the KTGF viscosity model without frictional stress is adopted, the EMMS drag model significantly over-estimates the bed expansion, whereas the modified Gibilaro et al. drag model can still give acceptable radial solid concentration profiles but over-estimate particle upwards and downwards velocity. When KTGF viscosity model with frictional stress is chosen, both drag models predict the occurrence of slugging. At this time, the particle velocity profiles predicted by EMMS drag model are still in well agreement with the experimental data, but the bed expansion is under-estimated.


Sign in / Sign up

Export Citation Format

Share Document