scholarly journals Smart Home Gateway Based on Integration of Deep Reinforcement Learning and Blockchain Framework

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1593
Author(s):  
Zeinab Shahbazi ◽  
Yung-Cheol Byun ◽  
Ho-Young Kwak

The development of information and communication technology in terms of sensor technologies cause the Internet of Things (IoT) step toward smart homes for prevalent sensing and management of resources. The gateway connections contain various IoT devices in smart homes representing the security based on the centralized structure. To address the security purposes in this system, the blockchain framework is considered a smart home gateway to overcome the possible attacks and apply Deep Reinforcement Learning (DRL). The proposed blockchain-based smart home approach carefully evaluated the reliability and security in terms of accessibility, privacy, and integrity. To overcome traditional centralized architecture, blockchain is employed in the data store and exchange blocks. The data integrity inside and outside of the smart home cause the ability of network members to authenticate. The presented network implemented in the Ethereum blockchain, and the measurements are in terms of security, response time, and accuracy. The experimental results show that the proposed solution contains a better outperform than recent existing works. DRL is a learning-based algorithm which has the most effective aspects of the proposed approach to improve the performance of system based on the right values and combining with blockchain in terms of security of smart home based on the smart devices to overcome sharing and hacking the privacy. We have compared our proposed system with the other state-of-the-art and test this system in two types of datasets as NSL-KDD and KDD-CUP-99. DRL with an accuracy of 96.9% performs higher and has a stronger output compared with Artificial Neural Networks with an accuracy of 80.05% in the second stage, which contains 16% differences in terms of improving the accuracy of smart homes.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3587
Author(s):  
Ezequiel Simeoni ◽  
Eugenio Gaeta ◽  
Rebeca I. García-Betances ◽  
Dave Raggett ◽  
Alejandro M. Medrano-Gil ◽  
...  

Internet of Things (IoT) technologies are already playing an important role in our daily activities as we use them and rely on them to increase our abilities, connectivity, productivity and quality of life. However, there are still obstacles to achieving a unique interface able to transfer full control to users given the diversity of protocols, properties and specifications in the varied IoT ecosystem. Particularly for the case of home automation systems, there is a high degree of fragmentation that limits interoperability, increasing the complexity and costs of developments and holding back their real potential of positively impacting users. In this article, we propose implementing W3C’s Web of Things Standard supported by home automation ontologies, such as SAREF and UniversAAL, to deploy the Living Lab Gateway that allows users to consume all IoT devices from a smart home, including those physically wired and using KNX® technology. This work, developed under the framework of the EC funded Plan4Act project, includes relevant features such as security, authentication and authorization provision, dynamic configuration and injection of devices, and devices abstraction and mapping into ontologies. Its deployment is explained in two scenarios to show the achieved technology’s degree of integration, the code simplicity for developers and the system’s scalability: one consisted of external hardware interfacing with the smart home, and the other of the injection of a new sensing device. A test was executed providing metrics that indicate that the Living Lab Gateway is competitive in terms of response performance.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2783 ◽  
Author(s):  
Linh-An Phan ◽  
Taehong Kim

Smart home is one of the most promising applications of the Internet of Things. Although there have been studies about this technology in recent years, the adoption rate of smart homes is still low. One of the largest barriers is technological fragmentation within the smart home ecosystem. Currently, there are many protocols used in a connected home, increasing the confusion of consumers when choosing a product for their house. One possible solution for this fragmentation is to make a gateway to handle the diverse protocols as a central hub in the home. However, this solution brings about another issue for manufacturers: compatibility. Because of the various smart devices on the market, supporting all possible devices in one gateway is also an enormous challenge. In this paper, we propose a software architecture for a gateway in a smart home system to solve the compatibility problem. By creating a mechanism to dynamically download and update a device profile from a server, the gateway can easily handle new devices. Moreover, the proposed gateway also supports unified control over heterogeneous networks. We implemented a prototype to prove the feasibility of the proposed gateway architecture and evaluated its performance from the viewpoint of message execution time over heterogeneous networks, as well as the latency for device profile downloads and updates, and the overhead needed for handling unknown commands.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2148 ◽  
Author(s):  
Mookyu Park ◽  
Haengrok Oh ◽  
Kyungho Lee

Internet-of-Things (IoT) is a technology that is extensively being used in various fields. Companies like Samsung, LG, and Apple are launching home appliances that use IoT as a part of their smart home business. Currently, Intelligent Things which combine artificial intelligence (AI) and IoT are being developed. Most of these devices are configured to collect and respond to human behavior (motion, voice, etc.) through built-in sensors. If IoT devices do not ensure high security, personal information could be leaked. This paper describes the IoT security threats that can cause information leakage from a hierarchical viewpoint of cyberspace. In addition, because these smart home-based IoT devices are closely related to human life, considering social damage is a problem. To overcome this, we propose a framework to measure the risk of IoT devices based on security scenarios that can occur in a smart home.


Author(s):  
Isabel Richter ◽  
Corinna Mielke ◽  
Reinhold Haux

Smart home systems create new opportunities for patient care. In this paper, a role model is created for the different groups of people involved in the care process of an occupant. Based on a systematic literature review seven roles were identified. A second literature review deals with the topic Feedback of Smart Home Systems. Combining both reviews visualization proposals were created and are presented for two of the roles. The role model is adapted to German health system but could be transformed for different countries. To confirm the results an evaluation of role model and visualization proposal should be done in collaboration with possible users of smart homes.


Author(s):  
Mana Saleh Al Reshan

Information Security is the foremost concern for IoT (Internet of things) devices and applications. Since the advent of IoT, its applications and devices have experienced an exponential increase in numerous applications which are utilized. Nowadays we people are becoming smart because we started using smart devices like a smartwatch, smart TV, smart home appliances. These devices are part of the IoT devices. The IoT device differs widely in capacity storage, size, computational power, and supply of energy. With the rapid increase of IoT devices in different IoT fields, information security, and privacy are not addressed well. Most IoT devices having constraints in computational and operational capabilities are a threat to security and privacy, also prone to cyber-attacks. This study presents a CIA triad-based information security implementation for the four-layer architecture of the IoT devices. An overview of layer-wise threats to the IoT devices and finally suggest CIA triad-based security techniques for securing the IoT devices.


Sign in / Sign up

Export Citation Format

Share Document