scholarly journals Photocatalytic Processes for Environmental Applications

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2080
Author(s):  
Olivier Monfort ◽  
Yanlin Wu

Photocatalysis, especially heterogeneous photocatalysis, is one of the most investigated processes for environmental remediation [...]

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paola Riente ◽  
Mauro Fianchini ◽  
Patricia Llanes ◽  
Miquel A. Pericàs ◽  
Timothy Noël

AbstractThe importance of discovering the true catalytically active species involved in photocatalytic systems allows for a better and more general understanding of photocatalytic processes, which eventually may help to improve their efficiency. Bi2O3 has been used as a heterogeneous photocatalyst and is able to catalyze several synthetically important visible-light-driven organic transformations. However, insight into the operative catalyst involved in the photocatalytic process is hitherto missing. Herein, we show through a combination of theoretical and experimental studies that the perceived heterogeneous photocatalysis with Bi2O3 in the presence of alkyl bromides involves a homogeneous BinBrm species, which is the true photocatalyst operative in the reaction. Hence, Bi2O3 can be regarded as a precatalyst which is slowly converted in an active homogeneous photocatalyst. This work can also be of importance to mechanistic studies involving other semiconductor-based photocatalytic processes.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1109 ◽  
Author(s):  
Sherif Younis ◽  
Ki-Hyun Kim

Heterogeneous photocatalysis is an ecofriendly technique for purifying organic pollutants in environmental systems. While pilot-scale photoreactors have explored photocatalytic system upscalibility, their practical implementation is restricted for various reasons. These include feed composition alteration, complicated photoreactor designs, high operation and synthesis costs, photocatalyst poisoning, low quantum yield under solar irradiation, fast exciton recombination, and low reuse or regeneration capabilities. In this paper, we highlight the photocatalyst scalability challenges for real-world applications. We also provide an in-depth discussion on photocatalyst opportunities for effective air and water pollution control. Lastly, we offer a contemporary perspective on photocatalysis scale-up for the real environmental treatment.


Author(s):  
Eleanor Rose Kearns ◽  
Rohan Gillespie ◽  
Deanna Michelle D'Alessandro

The world is facing a climate emergency: unchecked pollution coupled with rising CO2 levels is putting unprecedented strain on the planet’s ecosystems. Technologies for environmental remediation are thus becoming increasingly...


2001 ◽  
Vol 73 (12) ◽  
pp. 1849-1860 ◽  
Author(s):  
Krishnan Rajeshwar ◽  
C. R. Chenthamarakshan ◽  
Scott Goeringer ◽  
Miljana Djukic

Using hexavalent chromium [Cr(VI)] and methylene blue (MB) as model substrates, we discuss three aspects of TiO2-based heterogeneous photocatalysis. We show first that a given TiO2 sample may not be simultaneously optimal for photocatalytically driving the reduction of Cr(VI) and the oxidation of MB. We further show that a TiO2 sample that strongly adsorbs either of these substrates in the dark is not optimal as a photocatalyst. The other two aspects concern circumventing the rather poor surface catalytic properties and visible light photoresponse of TiO2, respectively. Strategies revolving around the visible light photoexcitation of the substrate itself and metal-modification of the TiO2 surface, are described as possible solutions.


2014 ◽  
Vol 781 ◽  
pp. 79-94 ◽  
Author(s):  
A. Nithya ◽  
Kandasamy Jothivenkatachalam ◽  
S. Prabhu ◽  
K. Jeganathan

Heterogeneous photocatalysis is a significant technology for environmental application. Moreover, immobilising an appropriate catalyst on the surface of a natural organic polymer presents a number of additional advantages including low-cost, high catalytic activity and extensive potential reuse for the application of pharmaceutical, biomedical and industrial activities. This review mainly focuses on the role of chitosan based material as photocatalyst on the environmental remediation.


2011 ◽  
Vol 1352 ◽  
Author(s):  
Emilly A. Obuya ◽  
William Harrigan ◽  
Tim O’Brien ◽  
Dickson Andala ◽  
Eliud Mushibe ◽  
...  

ABSTRACTThe synthesis and application of environmentally benign, efficient and low cost heterogeneous catalysts is increasingly important for affordable and clean chemical technologies. Nanomaterials have been proposed to have new and exciting properties relative to their bulk counterparts due to the quantum level interactions that exist at nanoscale. These materials also offer enormous surface to volume ratios that would be invaluable in heterogeneous catalysis. Recent studies point at titanium dioxide nanomaterials as having strong potential to be applied in heterogeneous photocatalysis for environmental remediation and pollution control. This work reports the use of surface modified anatase TiO2 nanofibers with rhodium (Rh) nanoparticles in the photodegradation of rhodamine B (RH-B), an organic pollutant. The dimensions of TiO2 nanofibers were 150±50 nm in diameter and the size of the Rh nanoparticles was ~5 nm. The Rh-doped TiO2 catalyst exhibited an enhanced photocatalytic activity in photodegradation of rhodamine B under visible light irradiation, with 95 % degradation within 180 minutes reaction time. Undoped TiO2 did not show any notable phocatalytic activity under visible light.


2014 ◽  
Vol 7 (10) ◽  
pp. 3192-3222 ◽  
Author(s):  
Palaniswamy Suresh Kumar ◽  
Jayaraman Sundaramurthy ◽  
Subramanian Sundarrajan ◽  
Veluru Jagadeesh Babu ◽  
Gurdev Singh ◽  
...  

Recent developments in the synthesis of electrospun nanomaterials and their potential prospects in energy and environmental applications are discussed in detail.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1514
Author(s):  
Osama Al-Madanat ◽  
Barbara Nascimento Nunes ◽  
Yamen AlSalka ◽  
Amer Hakki ◽  
Mariano Curti ◽  
...  

The interaction of light with semiconducting materials becomes the center of a wide range of technologies, such as photocatalysis. This technology has recently attracted increasing attention due to its prospective uses in green energy and environmental remediation. The characterization of the electronic structure of the semiconductors is essential to a deep understanding of the photocatalytic process since they influence and govern the photocatalytic activity by the formation of reactive radical species. Electron paramagnetic resonance (EPR) spectroscopy is a unique analytical tool that can be employed to monitor the photoinduced phenomena occurring in the solid and liquid phases and provides precise insights into the dynamic and reactivity of the photocatalyst under different experimental conditions. This review focus on the application of EPR in the observation of paramagnetic centers formed upon irradiation of titanium dioxide and niobium oxide photocatalysts. TiO2 and Nb2O5 are very well-known semiconductors that have been widely used for photocatalytic applications. A large number of experimental results on both materials offer a reliable platform to illustrate the contribution of the EPR studies on heterogeneous photocatalysis, particularly in monitoring the photogenerated charge carriers, trap states, and surface charge transfer steps. A detailed overview of EPR-spin trapping techniques in mechanistic studies to follow the nature of the photogenerated species in suspension during the photocatalytic process is presented. The role of the electron donors or the electron acceptors and their effect on the photocatalytic process in the solid or the liquid phase are highlighted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3254
Author(s):  
Radek Zouzelka ◽  
Jiri Olejnicek ◽  
Petra Ksirova ◽  
Zdenek Hubicka ◽  
Jan Duchon ◽  
...  

Heterogeneous photocatalysis of TiO2 is one of the most efficient advanced oxidation processes for water and air purification. Here, we prepared hierarchical TiO2 layers (Spikelets) by hollow-cathode discharge sputtering and tested their photocatalytic performance in the abatement of inorganic (NO, NO2) and organic (4-chlorophenol) pollutant dispersed in air and water, respectively. The structural-textural properties of the photocatalysts were determined via variety of physico-chemical techniques (XRD, Raman spectroscopy, SEM, FE-SEM. DF-TEM, EDAX and DC measurements). The photocatalysis was carried out under conditions similar to real environment conditions. Although the abatement of NO and NO2 was comparable with that of industrial benchmark Aeroxide® TiO2 P25, the formation of harmful nitrous acid (HONO) product on the Spikelet TiO2 layers was suppressed. Similarly, in the decontamination of water by organics, the mineralization of 4-chlorophenol on Spikelet layers was interestingly the same, although their reaction rate constant was three-times lower. The possible explanation may be the more than half-magnitude order higher external quantum efficacy (EQE) compared to that of the reference TiO2 P25 layer. Therefore, such favorable kinetics and reaction selectivity, together with feasible scale-up, make the hierarchical TiO2 layers very promising photocatalyst which can be used for environmental remediation.


Sign in / Sign up

Export Citation Format

Share Document