scholarly journals Exploring the Potential of Compressive Sensing and Super-Resolution for Space Applications in the MIR-TIR

Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 35
Author(s):  
Lastri ◽  
Guzzi ◽  
Nardino ◽  
Palombi ◽  
Raimondi

Earth Observation applications could take advantage from the availability of high spatial resolution data in the MIR-TIR. This, however, poses technological challenges, especially for the availability of large focal plane. Here we discuss two approaches, the compressive sensing and the super-resolution, that could provide a basis for the development of innovative EO instruments working in the MIR-TIR and able to enjoy an augmented resolution without increasing the number of detection elements in the matrix detector. Main pros and cons are analyzed, focusing on simulations done for an instrument combining both approaches to achieve super-resolved images for studying hot events.

2021 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Cinzia Lastri ◽  
Gabriele Amato ◽  
Massimo Baldi ◽  
Tiziano Bianchi ◽  
Maria Fabrizia Buongiorno ◽  
...  

This paper describes the activities related to a feasibility study for an Earth observation optical payload, operating in the medium infrared, based on super-resolution and compressive sensing techniques. The presented activities are running in the framework of the ASI project SISSI, aiming to improve ground spatial resolution and mitigate saturation/blooming effects. The core of the payload is a spatial light modulator (SLM): a bidimensional array of micromirrors electronically actuated. Thanks to compressive sensing approach, the proposed payload eliminates the compression board, saving mass, memory and energy consumption.


2021 ◽  
Vol 10 (02) ◽  
pp. 25284-25291
Author(s):  
Palani Murugan ◽  
Vivek Kumar Gautam ◽  
V. Ramanathan

In recent days, requirement of high spatial resolution remote sensing data in various fields has increased tremendously.  High resolution satellite remote sensing data is obtained with long focal length optical systems and low altitude. As fabrication of high-resolution optical system and accommodating on the satellite is a challenging task, various alternate methods are being explored to get high resolution imageries. Alternately the high-resolution data can be obtained from super resolution techniques. The super resolution technique uses single or multiple low-resolution mis-registered data sets to generate high resolution data set.  Various algorithms are employed in super resolution technique to derive high spatial resolution. In this paper we have compared two methods namely overlapping and interleaving methods and their capability in generating high resolution data are presented.


2015 ◽  
Author(s):  
J. C. Flake ◽  
Gary Euliss ◽  
John B. Greer ◽  
Stephanie Shubert ◽  
Glenn Easley ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 1944
Author(s):  
Xiaoming Liu ◽  
Menghua Wang

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been a reliable source of ocean color data products, including five moderate (M) bands and one imagery (I) band normalized water-leaving radiance spectra nLw(λ). The spatial resolutions of the M-band and I-band nLw(λ) are 750 m and 375 m, respectively. With the technique of convolutional neural network (CNN), the M-band nLw(λ) imagery can be super-resolved from 750 m to 375 m spatial resolution by leveraging the high spatial resolution features of I1-band nLw(λ) data. However, it is also important to enhance the spatial resolution of VIIRS-derived chlorophyll-a (Chl-a) concentration and the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), as well as other biological and biogeochemical products. In this study, we describe our effort to derive high-resolution Kd(490) and Chl-a data based on super-resolved nLw(λ) images at the VIIRS five M-bands. To improve the network performance over extremely turbid coastal oceans and inland waters, the networks are retrained with a training dataset including ocean color data from the Bohai Sea, Baltic Sea, and La Plata River Estuary, covering water types from clear open oceans to moderately turbid and highly turbid waters. The evaluation results show that the super-resolved Kd(490) image is much sharper than the original one, and has more detailed fine spatial structures. A similar enhancement of finer structures is also found in the super-resolved Chl-a images. Chl-a filaments are much sharper and thinner in the super-resolved image, and some of the very fine spatial features that are not shown in the original images appear in the super-resolved Chl-a imageries. The networks are also applied to four other coastal and inland water regions. The results show that super-resolution occurs mainly on pixels of Chl-a and Kd(490) features, especially on the feature edges and locations with a large spatial gradient. The biases between the original M-band images and super-resolved high-resolution images are small for both Chl-a and Kd(490) in moderately to extremely turbid coastal oceans and inland waters, indicating that the super-resolution process does not change the mean values of the original images.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Min Tian ◽  
Pei Lu ◽  
Xiaoyong Liu ◽  
Xi Lu

2019 ◽  
Vol 98 (7) ◽  
pp. 739-745 ◽  
Author(s):  
C. Cugini ◽  
M. Shanmugam ◽  
N. Landge ◽  
N. Ramasubbu

The oral cavity contains a rich consortium of exopolysaccharide-producing microbes. These extracellular polysaccharides comprise a major component of the oral biofilm. Together with extracellular proteins, DNA, and lipids, they form the biofilm matrix, which contributes to bacterial colonization, biofilm formation and maintenance, and pathogenesis. While a number of oral microbes have been studied in detail with regard to biofilm formation and pathogenesis, the exopolysaccharides have been well characterized for only select organisms, namely Streptococcus mutans and Aggregatibacter actinomycetemcomitans. Studies on the exopolysaccharides of other oral organisms, however, are in their infancy. In this review, we present the current research on exopolysaccharides of oral microbes regarding their biosynthesis, regulation, contributions to biofilm formation and stability of the matrix, and immune evasion. In addition, insight into the role of exopolysaccharides in biofilms is highlighted through the evaluation of emerging techniques such as pH probing of biofilm colonies, solid-state nuclear magnetic resonance for macromolecular interactions within biofilms, and super-resolution microscopy analysis of biofilm development. Finally, exopolysaccharide as a potential nutrient source for species within a biofilm is discussed.


2014 ◽  
Author(s):  
Chuanrong Li ◽  
Qi Wang ◽  
Changyong Cao ◽  
Xi Shao ◽  
Lingling Ma ◽  
...  

Author(s):  
А.Н. Баженов ◽  
П.А. Затылкин

Публикация посвящена применению методов вычислительной геометрии, интервального анализа и линейного программирования к задачам физики управляемого термоядерного синтеза. Рассмотрены геометрические аспекты проблемы, получены проекции светимостей различных объемов сферического токамака на плоскость матричного детектора, изучены изображения предполагаемых макроскопических структур и микроскопических включений. Для набора модельных распределений светимости объема токамака поставлена задача восстановления сигнала. Решение получено с использованием задач линейного программирования. The problems of reconstruction of plasma luminosity are important for physics and technology of power plants-tokamaks. The Globus-M research tokamak obtained a large amount of data using a matrix detector in pinhole camera geometry. From the mathematical point of view, finding the luminosity for different regions of the plasma volume according to the matrix detector is an inverse problem related to the field of integral geometry. An essential feature of the particular task is the use of a single fixed camera with a small viewing angle. In this regard, application of methods of harmonic analysis of data is not enough. The paper investigates the geometric aspects of the problem. In the general view, a threedimensional object is projected onto a two-dimensional plane through a diaphragm. Under the assumption of azimuthal symmetry, there is a central projection of the luminosity of the body of rotation onto a flat matrix detector. The initial information for the calculation is the plasma boundary obtained from magnetic sensors. There is no reliable information about the internal structure of the plasma, so its division into regions of the equal luminosity is not unambiguous. The paper presents an algorithm for finding the projections of the luminosity of plasma volumes on the plane of the matrix detector. A set of model direct problems for the construction of algorithms for their recognition according to the detector data was investigated. Images of supposed macroscopic structures and microscopic inclusions were obtained. The methodological basis of the work is the use of interval analysis methods for solving geometric and algebraic problems. This approach allows obtaining qualitative and quantitative results that takes into account the uncertainty of the input data with the minimum amount of computational costs. Algebraic solvability is investigated in the interval formulation using response functionality. Solutions for a set of test problems are obtained, which demonstrate the availability of successful reconstruction for real data. An important result of the study is an information about the presence of uncertainties in geometric data and related calculations by obtaining results about the luminosity of the plasma by solving linear programming problems.


Sign in / Sign up

Export Citation Format

Share Document