scholarly journals Atrium Impact on a School-Building: Thermal Performance in a Hot Climate

Proceedings ◽  
2020 ◽  
Vol 38 (1) ◽  
pp. 18 ◽  
Author(s):  
Romero-Odero ◽  
Galán-Marín ◽  
Rivera-Gómez

The process of climate change has increased the planet’s mean temperature. An example of this are the 44.3 °C registered in July in the cities of Córdoba and Seville (Spain). In this scenario, the educational centers in Andalusia, mostly built during the 20th century, are unable to reach the thermal comfort inside the classrooms throughout the year, without resorting to mechanical air conditioning procedures. This study simultaneously monitors indoors, outdoors and transitional spaces of a case study to verify the effectiveness of the passive cooling systems and the Atrium thermal effect of the building. Our results demonstrate that temperatures inside classrooms are influenced by the orientation and their air circulation (atrium or outdoor) and as expected, the higher temperature in the building are registered in the classrooms in the last floor.

2017 ◽  
Vol 14 (2) ◽  
pp. 137
Author(s):  
Nasser Al-Azri ◽  
Y. Zurigat ◽  
N. Al-Rawahi

Bioclimatic charts are used by engineers and architects in implementing passive cooling systems and architectural optimization with respect to natural air conditioning. Conventionally, the development of these charts is based on the availability of typical meteorological year which requires a record of meteorological data that are rarely available in sufficient amounts. Bioclimatic charts in Oman were developed earlier by the authors for limited locations based on the available typical meteorological years. Using dry bulb and dew point temperatures only, bioclimatic charts are developed for Adam, Buraimi, Ibra, Muscat, Nizwa, Rustaq, Saiq, Salalah, Suhar and Sur. These charts are better representative of bioclimatic trends since their development is mainly based on the relevant parameters, namely dry bulb temperature and dew point.


2021 ◽  
pp. 111285
Author(s):  
Panayiotis Kouis ◽  
Kyriaki Psistaki ◽  
George Yiallouros ◽  
Antonis Michanikou ◽  
Maria G. Kakkoura ◽  
...  

2022 ◽  
Vol 27 ◽  
pp. 932-944
Author(s):  
Ibtissame Benoudjafer

Abstract. Practice social of people is the key to produce space and give a possibility to maintain thermal comfort and energy efficiency. The main objective of this research is to adapt the traditional strategies in the architecture actual, to achieved a thermal comfort and improve on reducing cooling load through the using of vernacular gait. Today, it is necessary to practice these systems in the current or conventional architecture of household. The study is especially for arid cities namely the region of Saoura, in the hot and dry climatic zone in Algeria, considered for this study. Two main factors is considered such as design and urban where taken into account in order to select the appropriate and specific passive cooling strategy. The results show that the passive cooling strategy of courtyard would be appropriate for arid regions, however a high thermal mass would be suitable for construction. In conclusion, this work made it possible to choose a suitable passive cooling strategy for all types of construction in hot and dry climates. Finally, this paper puts forward a set of recommendations to improve the passive design of future buildings in hot and arid climates.  


2021 ◽  
Vol 5 (2) ◽  
pp. 177
Author(s):  
Inggit Musdinar Sayekti Sihing Yang Mawantu ◽  
Sri Kurniasih

Abstract: Subground passive cooling is a passive cooling technique that is carried out by flowing cold air in the ground into the room. The Pasio Christi Church in Cibunut, Kuningan, West Java was founded in 1965. Then the church implemented a passive cooling subground system through renovations carried out on May 11, 2018. This passive cooling system is usually carried out in areas with subtropical to cold climates, however Cibunut who has a tropical climate tries to implement this system. In fact, there is concern if the system is implemented in the tropics, such as humidity entering the system, causing fungal problems that can have an impact on health. . Therefore this research describes the application of the subground passive cooling system in tropical climates with the following steps: (i) data collection in the form of literature studies, (ii) identification of the subground passive cooling system of Cibunut Church, (iii) elaboration of theory regarding subground passive cooling, (iv) analysis of the application of subground passive cooling of the Cibunut church with the results of theoretical elaboration. This research is expected to be able to contribute in science, especially regarding the application of subground passive cooling systems in tropical climates.Abstrak: Subground passive cooling merupakan teknik pendinginan pasif yang dilakukan dengan mengalirkan udara dingin dalam tanah ke dalam ruangan. Gereja Pasio Christi di Cibunut, Kuningan, Jawa Barat didirikan sejak 1965. Lalu gereja ini menerapkan sistem subground passive cooling melalui renovasi yang dilakukan pada 11 Mei 2018. Sistem pendinginan pasif ini biasanya dilakukan pada wilayah dengan iklim subtropis hingga iklim dingin, namun demikian Cibunut yang beriklim tropis mencoba untuk menerapkan sistem ini. Padahal ada kekawatiran jika sistem ini diterapkan di wilayah tropis, seperti kelembaban yang masuk dalam sistem sehingga muncul permasalahan jamur yang dapat berdampak pada kesehatan. Oleh karena itu pada penelitian ini mendiskripsikan mengenai penerapan sistem subground passive cooling pada wilayah beriklim tropis dengan langkah-langkah sebagai berikut : (i) pengumpulan data dalam bentuk studi literatur, (ii) identifikasi sistem subground passive cooling Gereja Cibunut, (iii) elaborasi teori mengenai subground passive cooling, (iv) analisis penerapan subground passive cooling gereja Cibunut dengan hasil elaborasi teori. Dari penelitian ini diharapkan mampu memberikan sumbangsih dalam keilmuan terutama mengenai penerapan sistem subground passive cooling pada wilayah beriklim tropis.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2790 ◽  
Author(s):  
Carmen Calama-González ◽  
Rafael Suárez ◽  
Ángel León-Rodríguez

Most educational buildings in southern Spain do not meet current energy requirements as weak thermal envelopes and the lack of cooling systems lead to severe discomfort in classrooms, especially when temperatures are above 30 °C. Given that global warming is expected to worsen this situation in coming decades, one of the first steps to be taken is to protect window openings from high levels of solar radiation by adding shading devices to reduce indoor temperatures and improve visual comfort. The aim of this research is to evaluate the reduction in thermal and lighting consumption in a classroom where a solar protection system in the form of an egg-crate shading device was installed. Two classrooms—one with an egg-crate device and another with no shading system—were monitored and compared for a whole year. The use of an egg-crate device in these classrooms reduced indoor operative temperatures during warmer periods while also improving indoor natural illuminance levels. Moreover, annual electric air conditioning consumption decreased by approximately 20%, with a 50% reduction in electric lighting consumption. These savings in electricity were largely conditioned by the use patterns observed in these ambient systems.


Sign in / Sign up

Export Citation Format

Share Document