scholarly journals Thermal Dynamic Behavior in Bi-Zone Habitable Cell with and without Phase Change Materials

Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 41
Author(s):  
Hanae El Fakiri ◽  
Lahoucine Ouhsaine ◽  
Abdelmajid El Bouardi

The thermal dynamic behavior of buildings represents an important aspect of the energy efficiency and thermal comfort of the indoor environment. For this, phase change material (PCM) wallboards integrated into building envelopes play an important role in stabilizing the temperature of the human comfort condition. This article provides an assessment of the thermal behavior of a “bi-zone” building cell, which was built based on high-energy performance (HEP) standards and heated by a solar water heater system through a hydronic circuit. The current study is based on studying the dynamic thermal behavior, with and without implantation of PCMs on envelope structure, using a simplified modeling approach. The evolution of the average air temperature was first evaluated as a major indicator of thermal comfort. Then, an evaluation of the thermal behavior’s dynamic profile was carried out in this study, which allowed for the determination of the PCM rate anticipation in the thermal comfort of the building cell.

2020 ◽  
Vol 170 ◽  
pp. 01007
Author(s):  
Marwa El Yassi ◽  
Ikram El Abbassi ◽  
Alexandre Pierre ◽  
Yannick Melinge

Nowadays, buildings sector contributes to climate change by consuming a considerable amount of energy to afford thermal comfort for occupants. Passive cooling techniques are a promising solution to increase the thermal inertia of building envelopes, and reduce temperature fluctuations. The phase change materials, known as PCM, can be efficiently employed to this purpose, because of their high energy storage density. Among the various existing solutions, the present study is dedicated to solid-liquid phase change materials. Temperature evolution (according to their defined temperature range) induces the chemical change of the material and its state. For building applications, the chemical transition can be accomplished from liquid to solid (solidification) and from solid to liquid (melting). In fact, this paper presents a comparative thermal analysis of several test rooms with and without phase change materials embedded in a composite wallboard in different climates. The used PCM consist in a flexible sheet of 5 mm thickness (Energain, manufactured by the company DuPont de Nemours). The main properties of such a commercial solution have been delivered by the manufacturer and from analyses. The room model was validated using laboratory instrumentations and measurements of a test room in four cities: Lyon; Reading and Casablanca. Results indicate that this phase change material board can absorb heat gains and also reduce the indoor air temperature fluctuations during daytime. The aim of the study is to show the benefits of this layer with phase change material and compare it in different climatic zones.


2019 ◽  
Vol 185 ◽  
pp. 12-25 ◽  
Author(s):  
Ji Hun Park ◽  
Jongki Lee ◽  
Seunghwan Wi ◽  
Jisoo Jeon ◽  
Seong Jin Chang ◽  
...  

2021 ◽  
Vol 2042 (1) ◽  
pp. 012183
Author(s):  
L. Trovalet ◽  
L. Liu ◽  
D. Bigot ◽  
B. Malet-Damour

Abstract This study is being conducted to evaluate the effects of Phase Change Materials (PCM) on thermal comfort in buildings in Reunion Island. Experimental and numerical approaches are used to determine the criteria for the integration of bio-based PCM. A full-scale platform is divided into two rooms, where a layer of PCM is applied to one surface of the test room. Results show that the application of PCM delays the temperature rises and its maximum is reduced by up to 4 degrees. Finally, the experimental results are compared to those of a Dynamic Thermal Simulation (DTS) program to evaluate the ability of such programs to predict the thermal behavior of the building with and without PCM.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 724
Author(s):  
Macmanus Chinenye Ndukwu ◽  
Lyes Bennamoun ◽  
Merlin Simo-Tagne

The application of thermal storage materials in solar systems involves materials that utilize sensible heat energy, thermo-chemical reactions or phase change materials, such as hydrated salts, fatty acids paraffin and non-paraffin like glycerol. This article reviews the various exergy approaches that were applied for several solar systems including hybrid solar water heating, solar still, solar space heating, solar dryers/heaters and solar cooking systems. In fact, exergy balance was applied for the different components of the studied system with a particular attention given to the determination of the exergy efficiency and the calculation of the exergy during charging and discharging periods. The influence of the system configuration and heat transfer fluid was also emphasized. This review shows that not always the second law of thermodynamics was applied appropriately during modeling, such as how to consider heat charging and discharging periods of the tested phase change material. Accordingly, the possibility of providing with inappropriate or not complete results, was pointed.


2013 ◽  
Vol 687 ◽  
pp. 255-261 ◽  
Author(s):  
Sandra Cunha ◽  
José Barroso Aguiar ◽  
Victor Ferreira ◽  
António Tadeu

Increasingly in a society with a high growth rate and standards of comfort, the need to minimize the currently high energy consumption by taking advantage of renewable energy sources arises. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing for an increase in the level of thermal comfort and reduction of the use of heating, ventilation and air conditioning (HVAC) equipment, using only the energy supplied by the sun. However, the incorporation of PCM in mortars modifies some of its characteristics. Therefore, the main objective of this study was the characterization of mortars doped with two different phase change materials. Specific properties of different PCM, such as particle size, shape and enthalpy were studied, as well as the properties of the fresh and hardened state of these mortars. Nine different compositions were developed which were initially doped with microcapsules of PCM A and subsequently doped with microcapsules of PCM B. It was possible to observe that the incorporation of phase change materials in mortars causes differences in properties such as compressive strength, flexural strength and shrinkage. After the study of the behaviour of these mortars with the incorporation of two different phase change materials, it was possible to select the composition with a better compromise between its aesthetic appearance, physical and mechanical characteristics.


2021 ◽  
Vol 13 (3) ◽  
pp. 1257
Author(s):  
Luis Godoy-Vaca ◽  
E. Catalina Vallejo-Coral ◽  
Javier Martínez-Gómez ◽  
Marco Orozco ◽  
Geovanna Villacreses

This work aims to estimate the expected hours of Predicted Medium Vote (PMV) thermal comfort in Ecuadorian social housing houses applying energy simulations with Phase Change Materials (PCMs) for very hot-humid climates. First, a novel methodology for characterizing three different types of social housing is presented based on a space-time analysis of the electricity consumption in a residential complex. Next, the increase in energy demand under climate influences is analyzed. Moreover, with the goal of enlarging the time of thermal comfort inside the houses, the most suitable PCM for them is determined. This paper includes both simulations and comparisons of thermal behavior by means of the PMV methodology of four types of PCMs selected. From the performed energy simulations, the results show that changing the deck and using RT25-RT30 in walls, it is possible to increase the duration of thermal comfort in at least one of the three analyzed houses. The applied PCM showed 46% of comfortable hours and a reduction of 937 h in which the thermal sensation varies from “very hot” to “hot”. Additionally, the usage time of air conditioning decreases, assuring the thermal comfort for the inhabitants during a higher number of hours per day.


2021 ◽  
Vol 13 (7) ◽  
pp. 3614
Author(s):  
Zeyad Amin Al-Absi ◽  
Mohd Isa Mohd Hafizal ◽  
Mazran Ismail ◽  
Azhar Ghazali

Building sector is associated with high energy consumption and greenhouse gas emissions, which contribute to climate change. Sustainable development emphasizes any actions to reduce climate change and its effect. In Malaysia, half of the energy utilized in buildings goes towards building cooling. Thermal comfort studies and adaptive thermal comfort models reflect the high comfort temperatures for Malaysians in naturally conditioned buildings, which make it possible to tackle the difference between buildings’ indoor temperature and the required comfort temperature by using proper passive measures. This study investigates the effectiveness of building’s retrofitting with phase change materials (PCMs) as a passive cooling technology to improve the indoor thermal environment for more comfortable conditions. PCM sheets were numerically investigated below the internal finishing of the walls. The investigation involved an optimization study for the PCMs transition temperatures and quantities. The results showed significant improvement in the indoor thermal environment, especially when using lower transition temperatures and higher quantities of PCMs. Therefore, the monthly thermal discomfort time has decreased completely, while the thermal comfort time has increased to as high as 98%. The PCM was effective year-round and the optimum performance for the investigated conditions was achieved when using 18mm layer of PCM27-26.


10.2172/2741 ◽  
1995 ◽  
Author(s):  
K.W. Childs ◽  
P.W. Childs ◽  
J.E. Christian ◽  
T.W. Petrie

Sign in / Sign up

Export Citation Format

Share Document