scholarly journals Design and FDM/FFF Implementation of a Compact Omnidirectional Wheel for a Mobile Robot and Assessment of ABS and PLA Printing Materials

Robotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 43
Author(s):  
Elena Rubies ◽  
Jordi Palacín

This paper proposes the design and 3D printing of a compact omnidirectional wheel optimized to create a small series of three-wheeled omnidirectional mobile robots. The omnidirectional wheel proposed is based on the use of free-rotating passive wheels aligned transversally to the center of the main wheel and with a constant separation gap. This paper compares a three inner-passive wheels design based on mass-produced parts and 3D printed elements. The inner passive wheel that better combines weight, cost, and friction is implemented with a metallic ball bearing fitted inside a 3D printed U-grooved ring that holds a soft toric joint. The proposed design has been implemented using acrylonitrile butadiene styrene (ABS) and tough polylactic acid (PLA) as 3D printing materials in order to empirically compare the deformation of the weakest parts of the mechanical design. The conclusion is that the most critical parts of the omnidirectional wheel are less prone to deformation and show better mechanical properties if they are printed horizontally (with the axes that hold the passive wheels oriented parallel to the build surface), with an infill density of 100% and using tough PLA rather than ABS as a 3D printing material.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4249
Author(s):  
Diana Popescu ◽  
Florin Baciu ◽  
Catalin Gheorghe Amza ◽  
Cosmin Mihai Cotrut ◽  
Rodica Marinescu

Producing parts by 3D printing based on the material extrusion process determines the formation of air gaps within layers even at full infill density, while external pores can appear between adjacent layers making prints permeable. For the 3D-printed medical devices, this open porosity leads to the infiltration of disinfectant solutions and body fluids, which might pose safety issues. In this context, this research purpose is threefold. It investigates which 3D printing parameter settings are able to block or reduce permeation, and it experimentally analyzes if the disinfectants and the medical decontamination procedure degrade the mechanical properties of 3D-printed parts. Then, it studies acetone surface treatment as a solution to avoid disinfectants infiltration. The absorption tests results indicate the necessity of applying post-processing operations for the reusable 3D-printed medical devices as no manufacturing settings can ensure enough protection against fluid intake. However, some parameter settings were proven to enhance the sealing, in this sense the layer thickness being the most important factor. The experimental outcomes also show a decrease in the mechanical performance of 3D-printed ABS (acrylonitrile butadiene styrene) instruments treated by acetone cold vapors and then medical decontaminated (disinfected, cleaned, and sterilized by hydrogen peroxide gas plasma sterilization) in comparison to the control prints. These results should be acknowledged when designing and 3D printing medical instruments.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 93
Author(s):  
Muhammad Harris ◽  
Johan Potgieter ◽  
Hammad Mohsin ◽  
Karnika De Silva ◽  
Marie-Joo Le Guen

Acrylonitrile butadiene styrene (ABS) is a renowned commodity polymer for additive manufacturing, particularly fused deposition modelling (FDM). The recent large-scale applications of 3D-printed ABS require stable mechanical properties than ever needed. However, thermochemical scission of butadiene bonds is one of the contemporary challenges affecting the overall ABS stability. In this regard, literature reports melt-blending of ABS with different polymers with high thermal resistance. However, the comparison for the effects of different polymers on tensile strength of 3D-printed ABS blends was not yet reported. Furthermore, the cumulative studies comprising both blended polymers and in-process thermal variables for FDM were not yet presented as well. This research, for the first time, presents the statistical comparison of tensile properties for the added polymers and in-process thermal variables (printing temperature and build surface temperature). The research presents Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) to explain the thermochemical reasons behind achieved mechanical properties. Overall, ABS blend with PP shows high tensile strength (≈31 MPa) at different combinations of in-process parameters. Furthermore, some commonalities among both blends are noted, i.e., the tensile strength improves with increase of surface (bed) and printing temperature.


2019 ◽  
Vol 4 (1) ◽  
pp. 46-57
Author(s):  
Sharba Muammel M Hanon ◽  
M. Kovács ◽  
László Zsidai

Additive and subtractive manufacturing of Acrylonitrile Butadiene Styrene (ABS) were employed for fabricating samples. The Additive manufacturing was represented through 3D printing, whereas subtractive manufacturing carried out by Turning. Some developments have been applied for enhancing the performance of the 3D printer. Tribological measurements of the turned and 3D printed specimens have been achieved. Studying the difference between static and dynamic friction factors and the examination of wear values were included. A comparison of the tribological behaviour of the turned and 3D printed ABS polymer has been investigated.


Author(s):  
Michael J. Moore ◽  
Ronald Snelgrove ◽  
Johnson Darko ◽  
Ernest K. Osei

Abstract Introduction: Electron blocks are typically composed of a low melting point alloy (LMPA), which is poured into an insert frame containing a manually placed Styrofoam aperture negative used to define the desired field shape. Current implementations of the block fabrication process involve numerous steps which are subjective and prone to user error. Occasionally, bowing of the sides of the insert frame is observed, resulting in premature frame decommissioning. Recent works have investigated the feasibility of utilising 3D printing technology to replace the conventional electron block fabrication workflow; however, these approaches involved long print times, were not compatible with commonly used cadmium-free LMPAs, and did not address the problem of insert frame bowing. In this work, we sought to develop a new 3D printing technique that would remedy these issues. Materials and Methods: Electron cutout negatives and alignment jigs were printed using Acrylonitrile Butadiene Styrene, which does not warp at the high temperatures associated with molten cadmium-free alloys. The accuracy of the field shape produced by electron blocks fabricated using the 3D printed negatives was assessed using Gafchromic film and beam profiler measurements. As a proof-of-concept, electron blocks with off-axis apertures, as well as complex multi-aperture blocks to be used for passive electron beam intensity modulation, were also created. Results: Film and profiler measurements of field size were in excellent agreement with the values calculated using the Eclipse treatment planning system, showing less than a 1% difference in line profile full-width at half-maximum. The multi-aperture electron blocks produced fields with intensity modulation ≤3.2% of the theoretically predicted value. Use of the 3D printed alignment jig – which has contours designed to match those of the insert frame – was found to reduce the amount of frame bowing by factors of 1.8 and 2.1 in the lateral and superior–inferior directions, respectively. Conclusions: The 3D printed ABS negatives generated with our technique maintain their spatial accuracy even at the higher temperatures associated with cadmium-free LMPA. The negatives typically take between 1 and 2 hours to print and have a material cost of approximately $2 per patient.


Sign in / Sign up

Export Citation Format

Share Document