scholarly journals AUTOMATIC KAPPA ANGLE ESTIMATION FOR AIR PHOTOS BASED ON PHASE ONLY CORRELATION

Author(s):  
Z. Xiong ◽  
D. Stanley ◽  
Y. Xin

The approximate value of exterior orientation parameters is needed for air photo bundle adjustment. Usually the air borne GPS/IMU can provide the initial value for the camera position and attitude angle. However, in some cases, the camera’s attitude angle is not available due to lack of IMU or other reasons. In this case, the kappa angle needs to be estimated for each photo before bundle adjustment. The kappa angle can be obtained from the Ground Control Points (GCPs) in the photo. Unfortunately it is not the case that enough GCPs are always available. In order to overcome this problem, an algorithm is developed to automatically estimate the kappa angle for air photos based on phase only correlation technique. This function has been embedded in PCI software. Extensive experiments show that this algorithm is fast, reliable, and stable.

Author(s):  
Z. Xiong ◽  
D. Stanley ◽  
Y. Xin

The approximate value of exterior orientation parameters is needed for air photo bundle adjustment. Usually the air borne GPS/IMU can provide the initial value for the camera position and attitude angle. However, in some cases, the camera’s attitude angle is not available due to lack of IMU or other reasons. In this case, the kappa angle needs to be estimated for each photo before bundle adjustment. The kappa angle can be obtained from the Ground Control Points (GCPs) in the photo. Unfortunately it is not the case that enough GCPs are always available. In order to overcome this problem, an algorithm is developed to automatically estimate the kappa angle for air photos based on phase only correlation technique. This function has been embedded in PCI software. Extensive experiments show that this algorithm is fast, reliable, and stable.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2318 ◽  
Author(s):  
Martin Štroner ◽  
Rudolf Urban ◽  
Tomáš Reindl ◽  
Jan Seidl ◽  
Josef Brouček

Using a GNSS RTK (Global Navigation Satellite System Real Time Kinematic) -equipped unmanned aerial vehicle (UAV) could greatly simplify the construction of highly accurate digital models through SfM (Structure from Motion) photogrammetry, possibly even avoiding the need for ground control points (GCPs). As previous studies on this topic were mostly performed using fixed-wing UAVs, this study aimed to investigate the results achievable by a quadrocopter (DJI Phantom 4 RTK). Three image acquisition flights were performed for two sites of a different character (urban and rural) along with three calculation variants for each flight: georeferencing using ground-surveyed GCPs only, onboard GNSS RTK only, and a combination thereof. The combined and GNSS RTK methods provided the best results (at the expected level of accuracy of 1–2 GSD (Ground Sample Distance)) for both the vertical and horizontal components. The horizontal positioning was also accurate when georeferencing directly based on the onboard GNSS RTK; the vertical component, however, can be (especially where the terrain is difficult for SfM evaluation) burdened with relatively high systematic errors. This problem was caused by the incorrect identification of the interior orientation parameters calculated, as is customary for non-metric cameras, together with bundle adjustment. This problem could be resolved by using a small number of GCPs (at least one) or quality camera pre-calibration.


Author(s):  
P. Trusheim ◽  
C. Heipke

Abstract. Localization is one of the first steps in navigation. Especially due to the rapid development in automated driving, a precise and reliable localization becomes essential. In this paper, we report an investigation of the usage of dynamic ground control points (GCP) in visual localization in an automotive environment. Instead of having fixed positions, dynamic GCPs move together with the camera. As a measure of quality, we employ the precision of the bundle adjustment results. In our experiments, we simulate and investigate different realistic traffic scenarios. After investigating the role of tie points, we compare an approach using dynamic GCPs to an approach with static GCPs to answer the question how a comparable precision can be reached for visual localization. We show, that in our scenario, where two dynamic GCPs move together with a camera, similar results are indeed obtained to using a number of static GCPs distributed over the whole trajectory. In another experiment, we take a closer look at sliding window bundle adjustments. Sliding windows make it possible to work with an arbitrarily large number of images and to still obtain near real-time results. We investigate this approach in combination with dynamic GCPs and vary the no. of images per window.


2020 ◽  
Vol 12 (11) ◽  
pp. 1840 ◽  
Author(s):  
Gonzalo Simarro ◽  
Daniel Calvete ◽  
Paola Souto ◽  
Jorge Guillén

Joint intrinsic and extrinsic calibration from a single snapshot is a common requirement in coastal monitoring practice. This work analyzes the influence of different aspects, such as the distribution of Ground Control Points (GCPs) or the image obliquity, on the quality of the calibration for two different mathematical models (one being a simplification of the other). The performance of the two models is assessed using extensive laboratory data (i.e., snapshots of a grid). While both models are able to properly adjust the GCPs, the simpler model gives a better overall performance when the GCPs are not well distributed over the image. Furthermore, the simpler model allows for better recovery of the camera position and orientation.


Author(s):  
Raad Awad Kattan ◽  
◽  
Farsat Heeto Abdulrahman ◽  
Sami Mamlook Gilyana ◽  
Yousif Youkhna Zaya ◽  
...  

The progress in modern technologies such as precise lightweight cameras mounted on unmanned aerial vehicles (UAV) and the more user-friendly software in the photogrammetric field, allows for 3-D model construction of any structure or shape. Software now achieves in sequence the processes of matching, generating tie points, block bundle adjustment, and generating digital elevation models.The aim of this study is to make a virtual 3-D model of the college of engineering /University of Duhok. Kurdistan Region, Iraq. The data input is vertical and oblique imagery acquired by UAV, ground control points distributed on the surrounded ground, facades, and roof. Ground control points were measured by the GPS RTK system in addition to the reflectorless total station instrument. The data is processed mainly using Agisoft PhotoScan software as well as the Global Mapper and the ReCap software. The output is a 3-D model, digital elevation model, and orthomosaic.Geometric and visual inspections were carried out. Some imperfections appeared on the sharp edges and parapets of the building. In the geometric accuracy of selected points on the building, the maximum standard deviation in the coordinates was ±4cm. The relative accuracy in distance measurements were in the range of 0.72% to 4.92 %


2018 ◽  
Vol 10 (10) ◽  
pp. 1606 ◽  
Author(s):  
Enoc Sanz-Ablanedo ◽  
Jim Chandler ◽  
José Rodríguez-Pérez ◽  
Celestino Ordóñez

The geometrical accuracy of georeferenced digital surface models (DTM) obtained from images captured by micro-UAVs and processed by using structure from motion (SfM) photogrammetry depends on several factors, including flight design, camera quality, camera calibration, SfM algorithms and georeferencing strategy. This paper focusses on the critical role of the number and location of ground control points (GCP) used during the georeferencing stage. A challenging case study involving an area of 1200+ ha, 100+ GCP and 2500+ photos was used. Three thousand, four hundred and sixty-five different combinations of control points were introduced in the bundle adjustment, whilst the accuracy of the model was evaluated using both control points and independent check points. The analysis demonstrates how much the accuracy improves as the number of GCP points increases, as well as the importance of an even distribution, how much the accuracy is overestimated when it is quantified only using control points rather than independent check points, and how the ground sample distance (GSD) of a project relates to the maximum accuracy that can be achieved.


Author(s):  
A. Dinkel ◽  
L. Hoegner ◽  
A. Emmert ◽  
L. Raffl ◽  
U. Stilla

Abstract. This contribution discusses the accuracy and the applicability of Photogrammetric point clouds based on dense image matching for the monitoring of gravitational mass movements caused by crevices. Four terrestrial image sequences for three different time epochs have been recorded and oriented using ground control point in a local reference frame. For the first epoch, two sequences are recorded, one in the morning and one in the afternoon to evaluate the noise level within the point clouds for a static geometry and changing light conditions. The second epoch is recorded a few months after the first epoch where also no significant change has occurred in between. The third epoch is recorded after one year with changes detected. As all point clouds are given in the same local coordinate frame and thus are co-registered via the ground control points, change detection is based on calculating the Multiscale-Model-to-Model-Cloud distances (M3C2) of the point clouds. Results show no movements for the first year, but identify significant movements comparing the third epoch taken in the second year. Besides the noise level estimation, the quality checks include the accuracy of the camera orientations based on ground control points, the covariances of the bundle adjustment, and a comparison the Geodetic measurements of additional control points and a laser scanning point cloud of a part of the crevice. Additionally, geological measurements of the movements have been performed using extensometers.


Author(s):  
F. Kurz ◽  
T. Krauß ◽  
H. Runge ◽  
D. Rosenbaum ◽  
P. d’Angelo

<p><strong>Abstract.</strong> Highly precise ground control points, which are globally available, can be derived from the SAR satellite TerraSAR-X. This opens up many new applications like for example the precise aerial image orientation. In this paper, we propose a method for precise aerial image orientation using spaceborne geodetic Synthetic Aperture Radar Ground Control Points (SAR-GCPs). The precisely oriented aerial imagery can then be used e.g. for mapping of urban landmarks, which support the ego-positioning of autonomous cars. The method for precise image orientation was validated based on two aerial image data sets. SAR-GCPs were measured in images, then the image orientation has been improved by a bundle-adjustment. Results based on check points show, that the accuracy of the image orientation is better than 5&amp;thinsp;cm in X and Y coordinates.</p>


Author(s):  
Ali Coskun Kiraci ◽  
Gonul Toz

GNSS/INS system composed of Global Navigation Satellite System and Inertial Navigation System together can provide orientation parameters directly by the observations collected during the flight. Thus orientation parameters can be obtained by GNSS/INS integration process without any need for aero triangulation after the flight. In general, positional uncertainty can be estimated with known coordinates of Ground Control Points (GCP) which require field works such as marker construction and GNSS measurement leading additional cost to the project. Here the question arises what should be the theoretical uncertainty of point coordinates depending on the uncertainties of orientation parameters. In this study the contribution of each orientation parameter on positional uncertainty is examined and theoretical positional uncertainty is computed without GCP measurement for direct georeferencing using a graphical user interface developed in MATLAB.


Author(s):  
O. Mian ◽  
J. Lutes ◽  
G. Lipa ◽  
J. J. Hutton ◽  
E. Gavelle ◽  
...  

Efficient mapping from unmanned aerial platforms cannot rely on aerial triangulation using known ground control points. The cost and time of setting ground control, added to the need for increased overlap between flight lines, severely limits the ability of small VTOL platforms, in particular, to handle mapping-grade missions of all but the very smallest survey areas. Applanix has brought its experience in manned photogrammetry applications to this challenge, setting out the requirements for increasing the efficiency of mapping operations from small UAVs, using survey-grade GNSS-Inertial technology to accomplish direct georeferencing of the platform and/or the imaging payload. The Direct Mapping Solution for Unmanned Aerial Vehicles (DMS-UAV) is a complete and ready-to-integrate OEM solution for Direct Georeferencing (DG) on unmanned aerial platforms. Designed as a solution for systems integrators to create mapping payloads for UAVs of all types and sizes, the DMS produces directly georeferenced products for any imaging payload (visual, LiDAR, infrared, multispectral imaging, even video). Additionally, DMS addresses the airframe’s requirements for high-accuracy position and orientation for such tasks as precision RTK landing and Precision Orientation for Air Data Systems (ADS), Guidance and Control. <br><br> This paper presents results using a DMS comprised of an Applanix APX-15 UAV with a Sony a7R camera to produce highly accurate orthorectified imagery without Ground Control Points on a Microdrones md4-1000 platform conducted by Applanix and Avyon. APX-15 UAV is a single-board, small-form-factor GNSS-Inertial system designed for use on small, lightweight platforms. The Sony a7R is a prosumer digital RGB camera sensor, with a 36MP, 4.9-micron CCD producing images at 7360 columns by 4912 rows. It was configured with a 50mm AF-S Nikkor f/1.8 lens and subsequently with a 35mm Zeiss Sonnar T* FE F2.8 lens. Both the camera/lens combinations and the APX-15 were mounted to a Microdrones md4-1000 quad-rotor VTOL UAV. The Sony A7R and each lens combination were focused and calibrated terrestrially using the Applanix camera calibration facility, and then integrated with the APX-15 GNSS-Inertial system using a custom mount specifically designed for UAV applications. The mount is constructed in such a way as to maintain the stability of both the interior orientation and IMU boresight calibration over shock and vibration, thus turning the Sony A7R into a metric imaging solution. <br><br> In July and August 2015, Applanix and Avyon carried out a series of test flights of this system. The goal of these test flights was to assess the performance of DMS APX-15 direct georeferencing system under various scenarios. Furthermore, an examination of how DMS APX-15 can be used to produce accurate map products without the use of ground control points and with reduced sidelap was also carried out. Reducing the side lap for survey missions performed by small UAVs can significantly increase the mapping productivity of these platforms. <br><br> The area mapped during the first flight campaign was a 250m x 300m block and a 775m long railway corridor in a rural setting in Ontario, Canada. The second area mapped was a 450m long corridor over a dam known as Fryer Dam (over Richelieu River in Quebec, Canada). Several ground control points were distributed within both test areas. <br><br> The flight over the block area included 8 North-South lines and 1 cross strip flown at 80m AGL, resulting in a ~1cm GSD. The flight over the railway corridor included 2 North-South lines also flown at 80m AGL. Similarly, the flight over the dam corridor included 2 North-South lines flown at 50m AGL. The focus of this paper was to analyse the results obtained from the two corridors. <br><br> Test results from both areas were processed using Direct Georeferencing techniques, and then compared for accuracy against the known positions of ground control points in each test area. The GNSS-Inertial data collected by the APX-15 was post-processed in Single Base mode, using a base station located in the project area via POSPac UAV. For the block and railway corridor, the basestation’s position was precisely determined by processing a 12-hour session using the CSRS-PPP Post Processing service. Similarly, for the flight over Fryer Dam, the base-station’s position was also precisely determined by processing a 4-hour session using the CSRS-PPP Post Processing service. POSPac UAV’s camera calibration and quality control (CalQC) module was used to refine the camera interior orientation parameters using an Integrated Sensor Orientation (ISO) approach. POSPac UAV was also used to generate the Exterior Orientation parameters for images collected during the test flight. <br><br> The Inpho photogrammetric software package was used to develop the final map products for both corridors under various scenarios. The imagery was first imported into an Inpho project, with updated focal length, principal point offsets and Exterior Orientation parameters. First, a Digital Terrain/Surface Model (DTM/DSM) was extracted from the stereo imagery, following which the raw images were orthorectified to produce an orthomosaic product.


Sign in / Sign up

Export Citation Format

Share Document