scholarly journals LDAS-Monde Sequential Assimilation of Satellite Derived Observations Applied to the Contiguous US: An ERA-5 Driven Reanalysis of the Land Surface Variables

2018 ◽  
Vol 10 (10) ◽  
pp. 1627 ◽  
Author(s):  
Clement Albergel ◽  
Simon Munier ◽  
Aymeric Bocher ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
...  

Land data assimilation system (LDAS)-Monde, an offline land data assimilation system with global capacity, is applied over the CONtiguous US (CONUS) domain to enhance monitoring accuracy for water and energy states and fluxes. LDAS-Monde ingests satellite-derived surface soil moisture (SSM) and leaf area index (LAI) estimates to constrain the interactions between soil, biosphere, and atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the total runoff integrating pathways (CTRIP) continental hydrological system (ISBA-CTRIP). LDAS-Monde is forced by the ERA-5 atmospheric reanalysis from the European Center for Medium Range Weather Forecast (ECMWF) from 2010 to 2016 leading to a seven-year, quarter degree spatial resolution offline reanalysis of land surface variables (LSVs) over CONUS. The impact of assimilating LAI and SSM into LDAS-Monde is assessed over North America, by comparison to satellite-driven model estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project, and upscaled ground-based observations of gross primary productivity from the FLUXCOM project. Taking advantage of the relatively dense data networks over CONUS, we have also evaluated the impact of the assimilation against in situ measurements of soil moisture from the USCRN (US Climate Reference Network), together with river discharges from the United States Geological Survey (USGS) and the Global Runoff Data Centre (GRDC). Those data sets highlight the added value of assimilating satellite derived observations compared with an open-loop simulation (i.e., no assimilation). It is shown that LDAS-Monde has the ability not only to monitor land surface variables but also to forecast them, by providing improved initial conditions, which impacts persist through time. LDAS-Monde reanalysis also has the potential to be used to monitor extreme events like agricultural drought. Finally, limitations related to LDAS-Monde and current satellite-derived observations are exposed as well as several insights on how to use alternative datasets to analyze soil moisture and vegetation state.

2020 ◽  
Vol 12 (12) ◽  
pp. 2020 ◽  
Author(s):  
Anthony Mucia ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Clément Albergel ◽  
Jean-Christophe Calvet

LDAS-Monde is a global land data assimilation system (LDAS) developed by Centre National de Recherches Météorologiques (CNRM) to monitor land surface variables (LSV) at various scales, from regional to global. With LDAS-Monde, it is possible to jointly assimilate satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the interactions between soil biosphere and atmosphere (ISBA) land surface model (LSM) in order to analyze the soil moisture profile together with vegetation biomass. In this study, we investigate LDAS-Monde’s ability to predict LSV states up to two weeks in the future using atmospheric forecasts. In particular, the impact of the initialization, and the evolution of the forecasted variables in the LSM are addressed. LDAS-Monde is an offline system normally driven by atmospheric reanalysis, but in this study is forced by atmospheric forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) for the 2017–2018 period over the contiguous United States (CONUS) at a 0.2° × 0.2° spatial resolution. These LSV forecasts are initialized either by the model alone (LDAS-Monde open-loop, without assimilation) or by the analysis (assimilation of SSM and LAI). These two forecasts are then evaluated using satellite-derived observations of SSM and LAI, evapotranspiration (ET) estimates, as well as in situ measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate that for the three evaluation variables (SSM, LAI, and ET), LDAS-Monde provides reasonably accurate and consistent predictions two weeks in advance. Additionally, the initial conditions after assimilation are shown to make a positive impact with respect to LAI and ET. This impact persists in time for these two vegetation-related variables. Many model variables, such as SSM, root zone soil moisture (RZSM), LAI, ET, and drainage, remain relatively consistent as the forecast lead time increases, while runoff is highly variable.


2020 ◽  
Author(s):  
Anthony Mucia ◽  
Clément Albergel ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Jean-Christophe Calvet

<p>LDAS-Monde is a global Land Data Assimilation System developed in the research department of Météo-France (CNRM) to monitor Land Surface Variables (LSVs) at various scales, from regional to global. With LDAS-Monde, it is possible to assimilate satellite derived observations of Surface Soil Moisture (SSM) and Leaf Area Index (LAI) e.g. from the Copernicus Global Land Service (CGLS). It is an offline system normally driven by atmospheric reanalyses such as ECMWF ERA5.</p><p>In this study we investigate LDAS-Monde ability to use atmospheric forecasts to predict LSV states up to weeks in advance. In addition to the accuracy of the forecast predictions, the impact of the initialization on the LSVs forecast is addressed. To perform this study, LDAS-Monde is forced by a fifteen-day forecast from ECMWF for the 2017-2018 period over the Contiguous United States (CONUS) at 0.2<sup>o</sup> x 0.2<sup>o</sup> spatial resolution. These LSVs forecasts are initialized either by the model alone (LDAS-Monde open-loop, no assimilation, Fc_ol) or by the analysis (assimilation of SSM and LAI, Fc_an). These two sets of forecast are then assessed using satellite derived observations of SSM and LAI, evapotranspiration estimates, as well as in situ measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate that for the three evaluation variables (SSM, LAI, and evapotranspiration), LDAS-Monde provides reasonably accurate predictions two weeks in advance. Additionally, the initial conditions are shown to make a positive impact with respect to LAI, evapotranspiration, and deeper layers of soil moisture when using Fc_an. Moreover, this impact persists in time, particularly for vegetation related variables. Other model variables (such as runoff and drainage) are also affected by the initial conditions. Future work will focus on the transfer of this predictive information from a research to stakeholder tool.</p>


2015 ◽  
Vol 16 (3) ◽  
pp. 1293-1314 ◽  
Author(s):  
Marco L. Carrera ◽  
Stéphane Bélair ◽  
Bernard Bilodeau

Abstract The Canadian Land Data Assimilation System (CaLDAS) has been developed at the Meteorological Research Division of Environment Canada (EC) to better represent the land surface initial states in environmental prediction and assimilation systems. CaLDAS is built around an external land surface modeling system and uses the ensemble Kalman filter (EnKF) methodology. A unique feature of CaLDAS is the use of improved precipitation forcing through the assimilation of precipitation observations. An ensemble of precipitation analyses is generated by combining numerical weather prediction (NWP) model precipitation forecasts with precipitation observations. Spatial phasing errors to the NWP first-guess precipitation forecasts are more effective than perturbations to the precipitation observations in decreasing (increasing) the exceedance ratio (uncertainty ratio) scores and generating flatter, more reliable ranked histograms. CaLDAS has been configured to assimilate L-band microwave brightness temperature TB by coupling the land surface model with a microwave radiative transfer model. A continental-scale synthetic experiment assimilating passive L-band TBs for an entire warm season is performed over North America. Ensemble metric scores are used to quantify the impact of different atmospheric forcing uncertainties on soil moisture and TB ensemble spread. The use of an ensemble of precipitation analyses, generated by assimilating precipitation observations, as forcing combined with the assimilation of L-band TBs gave rise to the largest improvements in superficial soil moisture scores and to a more rapid reduction of the root-zone soil moisture errors. Innovation diagnostics show that the EnKF is able to maintain a sufficient forecast error spread through time, while soil moisture estimation error improvements with increasing ensemble size were limited.


2012 ◽  
Vol 13 (3) ◽  
pp. 1107-1118 ◽  
Author(s):  
Viviana Maggioni ◽  
Rolf H. Reichle ◽  
Emmanouil N. Anagnostou

Abstract This study presents a numerical experiment to assess the impact of satellite rainfall error structure on the efficiency of assimilating near-surface soil moisture observations. Specifically, the study contrasts a multidimensional satellite rainfall error model (SREM2D) to a simpler rainfall error model (CTRL) currently used to generate rainfall ensembles as part of the ensemble-based land data assimilation system developed at the NASA Global Modeling and Assimilation Office. The study is conducted in the Oklahoma region using rainfall data from a NOAA multisatellite global rainfall product [the Climate Prediction Center (CPC) morphing technique (CMORPH)] and the National Weather Service rain gauge–calibrated radar rainfall product [Weather Surveillance Radar-1988 Doppler (WSR-88D)] representing the “uncertain” and “reference” model rainfall forcing, respectively. Soil moisture simulations using the Catchment land surface model (CLSM), obtained by forcing the model with reference rainfall, are randomly perturbed to represent satellite retrieval uncertainty, and assimilated into CLSM as synthetic near-surface soil moisture observations. The assimilation estimates show improved performance metrics, exhibiting higher anomaly correlation coefficients (e.g., ~0.79 and ~0.90 in the SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively) and lower root-mean-square errors (e.g., ~0.034 m3 m−3 and ~0.024 m3 m−3 in the SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively). The more elaborate rainfall error model in the assimilation system leads to slightly improved assimilation estimates. In particular, the relative enhancement due to SREM2D over CTRL is larger for root zone soil moisture and in wetter rainfall conditions.


Sign in / Sign up

Export Citation Format

Share Document