scholarly journals A Point Pattern Chamfer Registration of Optical and SAR Images Based on Mesh Grids

2018 ◽  
Vol 10 (11) ◽  
pp. 1837 ◽  
Author(s):  
Chu He ◽  
Peizhang Fang ◽  
Dehui Xiong ◽  
Wenwei Wang ◽  
Mingsheng Liao

Automatic image registration of optical-to-Synthetic aperture radar (SAR) images is difficult because of the inconsistency of radiometric and geometric properties between the optical image and the SAR image. The intensity-based methods may require many calculations and be ineffective when there are geometric distortions between these two images. The feature-based methods have high requirements on features, and there are certain challenges in feature extraction and matching. A new automatic optical-to-SAR image registration framework is proposed in this paper. First, modified holistically nested edge detection is employed to detect the main contours in both the optical and SAR images. Second, a mesh grid strategy is presented to perform a coarse-to-fine registration. The coarse registration calculates the feature matching and summarizes the preliminary results for the fine registration process. Finally, moving direct linear transformation is introduced to perform a homography warp to alleviate parallax. The experimental results show the effectiveness and accuracy of our proposed method.

2019 ◽  
Vol 11 (15) ◽  
pp. 1833 ◽  
Author(s):  
Han Yang ◽  
Xiaorun Li ◽  
Liaoying Zhao ◽  
Shuhan Chen

Automatic image registration has been wildly used in remote sensing applications. However, the feature-based registration method is sometimes inaccurate and unstable for images with large scale difference, grayscale and texture differences. In this manuscript, a coarse-to-fine registration scheme is proposed, which combines the advantage of feature-based registration and phase correlation-based registration. The scheme consists of four steps. First, feature-based registration method is adopted for coarse registration. A geometrical outlier removal method is applied to improve the accuracy of coarse registration, which uses geometric similarities of inliers. Then, the sensed image is modified through the coarse registration result under affine deformation model. After that, the modified sensed image is registered to the reference image by extended phase correlation. Lastly, the final registration results are calculated by the fusion of the coarse registration and the fine registration. High universality of feature-based registration and high accuracy of extended phase correlation-based registration are both preserved in the proposed method. Experimental results of several different remote sensing images, which come from several published image registration papers, demonstrate the high robustness and accuracy of the proposed method. The evaluation contains root mean square error (RMSE), Laplace mean square error (LMSE) and red–green image registration results.


Author(s):  
C. Xu ◽  
H. G. Sui ◽  
D. R. Li ◽  
K. M. Sun ◽  
J. Y. Liu

Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM) to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.


Author(s):  
C. Xu ◽  
H. G. Sui ◽  
D. R. Li ◽  
K. M. Sun ◽  
J. Y. Liu

Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM) to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.


The target of the registration process is to get the disagreement between two captured images for the same area to candidate the transformation matrix that is used to map the points in one image to its congruent in the other image for the same area. A dynamic method is demonstrated in this paper to improve registration process of SAR images. At first, smoothing filtering is used for noise reduction based on gaussian-kernel filter to set aside the pursue-up amplification of noise. Then; area based matching method, cross correlation, is used to perform a coarse registration. The output of the coarse registration is directly applied to the regular step gradient descent (RSGD) optimizer as a fine registration process. The performance of the demonstrated method was evaluated via comparison with the common used corner detectors (Harris, Minimum Eigenvalues, and FAST). Mean square error (MSE) and peak signal-to-noise ratio (PSNR) are the main factors for the comparison. The results show that the demonstrated approach preserves the robustness of the registration process and minimizes the image noise.


2007 ◽  
Vol 19 (06) ◽  
pp. 359-374 ◽  
Author(s):  
Yih-Chih Chiou ◽  
Chern-Sheng Lin ◽  
Cheng-Yu Lin

Mammogram registration is a critical step in automatic detection of breast cancer. Much research has been devoted to registering mammograms using either feature-matching or similarity measure. However, a few studies have been done on combining these two methods. In this research, a hybrid mammogram registration method for the early detection of breast cancer is developed by combining feature-based and intensity-based image registration techniques. Besides, internal and external features were used simultaneously during the registration to obtain a global spatial transformation. The experimental results indicates that the similarity between the two mammograms increases significantly after a proper registration using the proposed TPS-registration procedures.


2019 ◽  
Vol 53 (3) ◽  
pp. 30-38
Author(s):  
Houjun Wang ◽  
Hui Liu ◽  
Ning Ding ◽  
Pingping Jing ◽  
Guangyu Li

AbstractIn this paper, the problems of mariculture area segmentation and corresponding area value estimations are investigated on the basis of airborne synthetic aperture radar (SAR) images. In order to deal with a limited amount of noisy airborne SAR image data in an efficient way, an effective coarse-to-fine approach is proposed, consisting of three major components, including (1) an adaptive segmentation method for each local patch to remove noise from the ocean background, (2) a dynamic coarse-to-fine clustering method for grouping pixels to achieve image segments, and (3) a polygon-fitting-based algorithm to obtain regular borders for each region and corresponding area value. Some feasible experiments are operated based on the restricted airborne SAR images, and the effectiveness of the proposed algorithm is validated in terms of the provided pixel level evaluation annotations.


2019 ◽  
Vol 11 (12) ◽  
pp. 1418
Author(s):  
Zhaohui Zheng ◽  
Hong Zheng ◽  
Yong Ma ◽  
Fan Fan ◽  
Jianping Ju ◽  
...  

In feature-based image matching, implementing a fast and ultra-robust feature matching technique is a challenging task. To solve the problems that the traditional feature matching algorithm suffers from, such as long running time and low registration accuracy, an algorithm called feedback unilateral grid-based clustering (FUGC) is presented which is able to improve computation efficiency, accuracy and robustness of feature-based image matching while applying it to remote sensing image registration. First, the image is divided by using unilateral grids and then fast coarse screening of the initial matching feature points through local grid clustering is performed to eliminate a great deal of mismatches in milliseconds. To ensure that true matches are not erroneously screened, a local linear transformation is designed to take feedback verification further, thereby performing fine screening between true matching points deleted erroneously and undeleted false positives in and around this area. This strategy can not only extract high-accuracy matching from coarse baseline matching with low accuracy, but also preserves the true matching points to the greatest extent. The experimental results demonstrate the strong robustness of the FUGC algorithm on various real-world remote sensing images. The FUGC algorithm outperforms current state-of-the-art methods and meets the real-time requirement.


Sign in / Sign up

Export Citation Format

Share Document