scholarly journals Statistical Characteristics of Raindrop Size Distribution in the Monsoon Season Observed in Southern China

2019 ◽  
Vol 11 (4) ◽  
pp. 432 ◽  
Author(s):  
Asi Zhang ◽  
Junjun Hu ◽  
Sheng Chen ◽  
Dongming Hu ◽  
Zhenqing Liang ◽  
...  

This study investigates the statistical characteristics of raindrop size distributions (DSDs) in monsoon season with observations collected by the second-generation Particle Size and Velocity (Parsivel2) disdrometer located in Zhuhai, southern China. The characteristics are quantified based on convective and stratiform precipitation classified using the rainfall intensity and total number of drops. On average of the whole dataset, the DSD characteristic in southern China consists of a higher number concentration of relatively small-sized drops when compare with eastern China and northern China, respectively. In the meanwhile, the Dm and log10Nw scatter plots prove that the convective rain in monsoon season can be identified as maritime-like cluster. The DSD is in good agreement with a three-parameter gamma distribution, especially for the medium to large raindrop size. Using filtered data observed by Parsivel2 disdrometer, a new Z–R relationship, Z = 498R1.3, is derived for convective rain in monsoon season in southern China. These results offer insights of the microphysical nature of precipitation in Zhuhai during monsoon season, and provide essential information that may be useful for precipitation retrievals based on weather radar observations.

2021 ◽  
Vol 13 (15) ◽  
pp. 2878
Author(s):  
Chaoying Huang ◽  
Sheng Chen ◽  
Asi Zhang ◽  
Ying Pang

The South China Sea (SCS) is the largest and southernmost sea in China. Water vapor from the SCS is the primary source of precipitation over coastal areas during the summer monsoon season and may cause the uneven distribution of rainfall in southern China. Deep insight into the spatial variability of raindrop size distribution (DSD) is essential for understanding precipitation microphysics, since DSD contains abundant information about rainfall microphysics processes. However, compared to the studies of DSDs over mainland China, very little is known about DSDs over Chinese ocean areas, especially over the South China Sea (SCS). This study investigated the statistical characteristics of the DSD in summer monsoon seasons using the second-generation Particle Size and Velocity (Parsivel2) installed on the scientific research vessel that measured the size and velocity of raindrops over the SCS. In this study, the characteristics of precipitation over the SCS for daytime and nighttime rains were analyzed for different precipitation systems and upon different rain rates. It was found that: 1) rain events were more frequent during the late evening to early morning; 2) more than 78.2% of the raindrops’ diameters were less than 2 mm, and the average value of mass-weighted mean diameter (1.46 mm) of the SCS is similar to that over land in the southern China; 3) the stratiform precipitation features a relatively high concentration of medium to large-sized rain drops compared to other regions; 4) the DSD in the SCS agreed with a three-parameter gamma distribution for the small raindrop diameter. Furthermore, a possible factor for significant DSD variability in the ocean compared with the coast and large islands is also discussed.


2008 ◽  
Vol 47 (2) ◽  
pp. 576-590 ◽  
Author(s):  
N. V. P. Kirankumar ◽  
T. Narayana Rao ◽  
B. Radhakrishna ◽  
D. Narayana Rao

Abstract Raindrop size distribution (DSD) parameters are retrieved from dual-frequency (UHF and VHF) wind profiler measurements made at Gadanki, India, in a summer monsoon season. The convoluted UHF spectra are first corrected for vertical air motion and spectral broadening (using VHF measurements) and later are used for deriving DSD parameters. Two distinctly different case studies, a mesoscale convective system and a pure stratiform precipitation system, have been considered for a detailed study. DSD parameters obtained in these case studies reveal systematic variations of DSD from case to case and also from one rain regime to another within the same precipitating system. A statistical study has been carried out using the profiler data collected during the passage of 16 rain events. The retrieved DSD profiles are divided into separate rain regimes (stratiform and convection), based on reflectivity, to examine salient microphysical characteristics and the vertical variability of DSD in different precipitation regimes. The distribution of DSD parameters is, in general, wider in the convective rain regime than in the stratiform regime, particularly below 2.4 km. The vertical variation of the gamma parameter distribution in the stratiform rain regime is minimal, indicating that the microphysical processes (growth and decay), which alter the rain DSD, may be in equilibrium. On the other hand, the distribution in the convective rain regime appears to be more complex, with the mean profile of the shape parameter varying significantly with height. The observed vertical variability of the gamma parameters and the median volume diameter in the convective rain regime is attributed to two major microphysical processes: evaporation and breakup. The role of other processes, like drop sorting and collision–coalescence, in altering the DSD parameters is also discussed. The present statistics, representing continental monsoon rainfall, are compared with the existing statistics at Darwin, Australia, and the results are discussed in light of DSD differences in oceanic and continental monsoon precipitation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yong Zeng ◽  
Lianmei Yang ◽  
Zepeng Tong ◽  
Yufei Jiang ◽  
Zuyi Zhang ◽  
...  

Raindrop size distribution (DSD) is of great significance for understanding the microphysical process of rainfall and the quantitative precipitation estimation (QPE). However, in the past, there was a lack of relevant research on Xinjiang in the arid region of northwest China. In this study, the rainy season data collected by the disdrometer in the Yining area of Xinjiang were used for more than two years, and the characteristics of DSDs for all samples, for two rain types (convective and stratiform), and for six different rain rates were studied. The results showed that nearly 70% of the total samples had a rainfall rate of less than 1 mm·h−1, the convective rain was neither continental nor maritime, and there was a clear boundary between convective rain and stratiform rain in terms of the scattergram of the standardized intercept parameter ( log 10 N w ) versus the mass-weighted average diameter ( D m ). When the raindrop diameter was less than 0.7 mm, DSDs of the two rainfalls basically coincided, while when the raindrop diameter was greater than 0.7 mm, DSDs of convective rainfall were located above the stratiform rain. As the rainfall rate increased, D m increased, while log 10 N w first increased and then decreased. In addition, we deduced the Z − R (radar reflectivity-rain rate) relationship and μ − Λ relationship (shape parameter-slope parameter of the gamma DSDs) suitable for the Yining area. These conclusions are conducive to strengthening the understanding of rainfall microphysical processes in arid regions and improving the ability of QPE in arid regions.


2019 ◽  
Vol 23 (10) ◽  
pp. 4153-4170 ◽  
Author(s):  
Yu Ma ◽  
Guangheng Ni ◽  
Chandrasekar V. Chandra ◽  
Fuqiang Tian ◽  
Haonan Chen

Abstract. Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation, especially in complex terrain or urban environments which are known for complicated rainfall mechanism and high spatial and temporal variability. In this study, the DSD characteristics of rainy seasons in the Beijing urban area are extensively investigated using 5-year DSD observations from a Parsivel2 disdrometer located at Tsinghua University. The results show that the DSD samples with rain rate < 1 mm h−1 account for more than half of total observations. The mean values of the normalized intercept parameter (log 10Nw) and the mass-weighted mean diameter (Dm) of convective rain are higher than that of stratiform rain, and there is a clear boundary between the two types of rain in terms of the scattergram of log 10Nw versus Dm. The convective rain in Beijing is neither continental nor maritime, owing to the particular location and local topography. As the rainfall intensity increases, the DSD spectra become higher and wider, but they still have peaks around diameter D∼0.5 mm. The midsize drops contribute most towards accumulated rainwater. The Dm and log 10Nw values exhibit a diurnal cycle and an annual cycle. In addition, at the stage characterized by an abrupt rise of urban heat island (UHI) intensity as well as the stage of strong UHI intensity during the day, DSD shows higher Dm values and lower log 10Nw values. The localized radar reflectivity (Z) and rain rate (R) relations (Z=aRb) show substantial differences compared to the commonly used NEXRAD relationships, and the polarimetric radar algorithms R(Kdp), R(Kdp, ZDR), and R(ZH, ZDR) show greater potential for rainfall estimation.


2019 ◽  
Author(s):  
Yu Ma ◽  
Guangheng Ni ◽  
V. Chandrasekar ◽  
Fuqiang Tian ◽  
Haonan Chen

Abstract. Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation, especially in complex terrain or urban environment which is known for its complicated rainfall mechanism and high spatial and temporal variability. In this study, the DSD characteristics of rainy seasons in Beijing urban area are extensively investigated using 5-year DSD observations from a Parsivel2 disdrometer located at Tsinghua University. The results show that the DSD samples with rain rate < 1 mm h−1 account for more than half of total observations. The mean values of log10 Nw and Dm of convective rain are higher than that of stratiform rain, and there is a clear boundary between the two types of rain in terms of the scattergram of log10Nw versus Dm. The convective rain in Beijing is neither continental nor maritime owing to the particular location and local topography. As the rainfall intensity increases, the DSD spectra become higher and wider, but they still have peaks around diameter D ~ 0.5 mm. The midsize drops contribute most towards accumulated rainwater. The Dm and log10Nw values show a diurnal cycle and an annual cycle. In addition, DSD shows higher Dm values and lower log10Nw values during the periods of strong urban heat island (UHI) effect and UHI up stage of a day, and the same in July and August. The localized radar reflectivity (Z) and rain rate (R) relations (Z = aRb) show substantial differences compared to the commonly used NEXRAD relationships. And the polarimetric radar algorithms R(Kdp), R(Kdp, ZDR), and R(ZH, ZDR) show greater potential for rainfall estimation.


2016 ◽  
Author(s):  
Yu Hao Mao ◽  
Hong Liao

Abstract. We applied a global three-dimensional chemical transport model (GEOS-Chem) to examine the impacts of the East Asian monsoon on the interannual variations of mass concentrations and direct radiative forcing (DRF) of black carbon (BC) over eastern China (110–125° E, 20–45° N). With emissions fixed at the year 2010 levels, model simulations were driven by the Goddard Earth Observing System (GEOS-4) meteorological fields for 1986–2006 and the Modern Era Retrospective-analysis for Research and Applications (MERRA) meteorological fields for 1980–2010. During the period of 1986–2006, simulated JJA and DJF surface BC concentrations were higher in MERRA than in GEOS-4 by 0.30 µg m−3 (44 %) and 0.77 µg m−3 (54 %), respectively, because of the generally weaker precipitation in MERRA. We found that the strength of the East Asian summer monsoon (EASM, (East Asian winter monsoon, EAWM)) negatively correlated with simulated JJA (DJF) surface BC concentrations (r = –0.7 (–0.7) in GEOS-4 and –0.4 (–0.7) in MERRA), mainly by the changes in atmospheric circulation. Relative to the five strongest EASM years, simulated JJA surface BC concentrations in the five weakest monsoon years were higher over northern China (110–125° E, 28–45° N) by 0.04–0.09 µg m−3 (3–11 %), but lower over southern China (110–125° E, 20–27° N) by 0.03–0.04 µg m−3 (10–11 %). Compared to the five strongest EAWM years, simulated DJF surface BC concentrations in the five weakest monsoon years were higher by 0.13–0.15 µg m−3 (5–8 %) in northern China and by 0.04–0.10 µg m−3 (3–12 %) in southern China. The resulting JJA (DJF) mean all-sky DRF of BC at the top of the atmosphere were 0.04 W m−2 (3 %, (0.03 W m−2, 2 %)) higher in northern China but 0.06 W m−2 (14 %, (0.03 W m−2, 3 %)) lower in southern China. In the weakest monsoon years, the weaker vertical convection led to the lower BC concentrations above 1–2 km in southern China, and therefore the lower BC DRF in the region. The differences in vertical profiles of BC between the weakest and strongest EASM years (1998–1997) and EAWM years (1990–1996) reached up to –0.09 µg m−3 (–46 %) and –0.08 µg m−3 (–11 %) at 1–2 km in eastern China.


Sign in / Sign up

Export Citation Format

Share Document