scholarly journals Drifting Effects of NOAA Satellites on Long-Term Active Fire Records of Europe

2019 ◽  
Vol 11 (4) ◽  
pp. 467 ◽  
Author(s):  
Helga Weber ◽  
Stefan Wunderle

Explicit knowledge of different error sources in long-term climate records from space is required to understand and mitigate their impacts on resulting time series. Imagery of the heritage Advanced Very High Resolution Radiometer (AVHRR) provides unique potential for climate research dating back to the 1980s, flying onboard a series of successive National Oceanic and Atmospheric Administration (NOAA) and Meteorological Operational (MetOp) satellites. However, the NOAA satellites are affected by severe orbital drift that results in spurious trends in time series. We identified the impact and extent of the orbital drift in 1 km AVHRR long-term active fire data. This record contains data of European fire activity from 1985–2016 and was analyzed on a regional scale and extended across Europe. Inconsistent sampling of the diurnal active fire cycle due to orbital drift with a maximum delay of ∼5 h over NOAA-14 lifetime revealed a ∼90% decline in the number of observed fires. However, interregional results were less conclusive and other error sources as well as interannual variability were more pronounced. Solar illumination, measured by the sun zenith angle (SZA), related changes in background temperatures were significant for all regions and afternoon satellites with major changes in −0.03 to −0.09 K deg − 1 for ▵ B T 34 (p ≤ 0 . 001). Based on example scenes, we simulated the influence of changing temperatures related to changes in the SZA on the detection of active fires. These simulations showed a profound influence of the active fire detection capabilities dependent on biome and land cover characteristics. The strong decrease in the relative changes in the apparent number of active fires calculated over the satellites lifetime highlights that a correction of the orbital drift effect is essential even over short time periods.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


2007 ◽  
pp. 88
Author(s):  
Wataru Suzuki ◽  
Yanfei Zhou

This article represents the first step in filling a large gap in knowledge concerning why Public Assistance (PA) use recently rose so fast in Japan. Specifically, we try to address this problem not only by performing a Blanchard and Quah decomposition on long-term monthly time series data (1960:04-2006:10), but also by estimating prefecturelevel longitudinal data. Two interesting findings emerge from the time series analysis. The first is that permanent shock imposes a continuously positive impact on the PA rate and is the main driving factor behind the recent increase in welfare use. The second finding is that the impact of temporary shock will last for a long time. The rate of the use of welfare is quite rigid because even if the PA rate rises due to temporary shocks, it takes about 8 or 9 years for it to regain its normal level. On the other hand, estimations of prefecture-level longitudinal data indicate that the Financial Capability Index (FCI) of the local government2 and minimum wage both impose negative effects on the PA rate. We also find that the rapid aging of Japan's population presents a permanent shock in practice, which makes it the most prominent contribution to surging welfare use.


2020 ◽  
Author(s):  
Zhixin Hao

<p>In China, historical documents record a large quantity of information related to climate change and grain harvest. This information can help to explore the impacts of extreme drought or flood on crop production, which can provide implications for the adaptation of agriculture to higher-probability extreme climate in the context of global warming. In this paper, reported extreme drought/flood chronologies and reconstructed grain harvest series derived from historical documents were adopted in order to investigate the association between the reported frequency of extreme drought/flood in eastern China and reconstructed poor harvests during 801–1910. The results show that extreme droughts were reported more often in 801–870, 1031–1230, 1481–1530, and 1581–1650 over the whole of eastern China. On a regional scale, extreme droughts were reported more often in 1031–1100, 1441–1490, 1601–1650, and 1831–1880 in the North China Plain, 801–870, 1031–1120, 1161–1220, and 1471–1530 in Jianghuai, and 991–1040, 1091–1150, 1171–1230, 1411–1470, and 1481–1530 in Jiangnan. The grain harvest was reconstructed to be generally poor in 801–940, 1251–1650, and 1841–1910, but the reconstructed harvests were bumper in 951–1250 and 1651–1840, approximately. During the entire period from 801 to 1910, the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated over the long term with lower reconstructed harvests. The association between reported frequency of extreme floods and reconstructed low harvests appeared to be much weaker, while reconstructed harvest was much worse when extreme drought and extreme flood in different subregions were reported in the same year. The association between reconstructed poor harvests and reported frequency of regional extreme droughts was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which could imply that a warm climate could weaken the impact of extreme drought on poor harvests; yet other historical factors may also contribute to these different patterns extracted from the two datasets.</p>


2020 ◽  
Author(s):  
Maria Adamo ◽  
Valeria Tomaselli ◽  
Francesca Mantino ◽  
Cristina Tarantino ◽  
Palma Blonda

<p>Coastal wetlands are one of the most threatened ecosystems worldwide. In the Mediterranean Region, wetlands are undergoing rapid changes due to the increasing of human pressures (e.g. land reclamation, water resources exploitation) and climate changes (e.g. coastal erosion), with a resulting habitat degradation, fragmentation, and biodiversity loss.</p><p>Long-term habitat mapping and change detection are essential for the management of coastal wetlands as well as for evaluating the impact of conservation policies.</p><p>Earth observation (EO) data and techniques are a valuable resource for long-term habitat mapping, thanks to the large amount of available data and their high spatial and temporal resolution. In this study, we propose an approach based on the integration of time series of Sentinel-2 images and ecological expert knowledge for land cover (LC) mapping and automatic translation to habitats in coastal wetlands. In particular, the research relies on the exploitation of ecological rules based on combined information related to plant phenology, water seasonality of aquatic species, pattern zonation, and habitat geometric properties.</p><p>The methodology is applied to two Natura2000 sites, “Zone umide della Capitanata” and “Paludi presso il Golfo di Manfredonia”, located in the northeastern part of the Puglia region. These two areas are the most extensive wetlands of the Italian peninsula and the largest components of the Mediterranean wetland system.</p><p>Land Cover classes are labelled according to the FAO-LCCS taxonomy, which offers a framework to integrate EO data with in situ and ancillary data. Output habitat classes are labelled according to EUNIS habitat classification.</p>


2009 ◽  
Vol 9 (16) ◽  
pp. 5975-5988 ◽  
Author(s):  
J. Morland ◽  
M. Collaud Coen ◽  
K. Hocke ◽  
P. Jeannet ◽  
C. Mätzler

Abstract. Integrated Water vapour (IWV) has been measured since 1994 by the TROWARA microwave radiometer in Bern, Switzerland. Homogenization techniques were used to identify and correct step changes in IWV related to instrument problems. IWV from radiosonde, GPS and sun photometer (SPM) was used in the homogenisation process as well as partial IWV columns between valley and mountain weather stations. The average IWV of the homogenised TROWARA time series was 14.4 mm over the 1996–2007 period, with maximum and minimum monthly average values of 22.4 mm and 8 mm occurring in August and January, respectively. A weak diurnal cycle in TROWARA IWV was detected with an amplitude of 0.32 mm, a maximum at 21:00 UT and a minimum at 11:00 UT. For 1996–2007, TROWARA trends were compared with those calculated from the Payerne radiosonde and the closest ECMWF grid point to Bern. Using least squares analysis, the IWV time series of radiosondes at Payerne, ECMWF, and TROWARA showed consistent positive trends from 1996 to 2007. The radiosondes measured an IWV trend of 0.45±0.29%/y, the TROWARA radiometer observed a trend of 0.39±0.44%/y, and ECMWF operational analysis gave a trend of 0.25±0.34%/y. Since IWV has a strong and variable annual cycle, a seasonal trend analysis (Mann-Kendall analysis) was also performed. The seasonal trends are stronger by a factor 10 or so compared to the full year trends above. The positive IWV trends of the summer months are partly compensated by the negative trends of the winter months. The strong seasonal trends of IWV on regional scale underline the necessity of long-term monitoring of IWV for detection,understanding, and forecast of climate change effects in the Alpine region.


2012 ◽  
Vol 5 (2) ◽  
pp. 267-273 ◽  
Author(s):  
A. Devasthale ◽  
K.-G. Karlsson ◽  
J. Quaas ◽  
H. Grassl

Abstract. The Advanced Very High Resolution Radiometer (AVHRR) instruments onboard the series of National Oceanic and Atmospheric Administration (NOAA) satellites offer the longest available meteorological data records from space. These satellites have drifted in orbit resulting in shifts in the local time sampling during the life span of the sensors onboard. Depending upon the amplitude of the diurnal cycle of the geophysical parameters derived, orbital drift may cause spurious trends in their time series. We investigate tropical deep convective clouds, which show pronounced diurnal cycle amplitude, to estimate an upper bound of the impact of orbital drift on their time series. We carry out a rotated empirical orthogonal function analysis (REOF) and show that the REOFs are useful in delineating orbital drift signal and, more importantly, in subtracting this signal in the time series of convective cloud amount. These results will help facilitate the derivation of homogenized data series of cloud amount from NOAA satellite sensors and ultimately analyzing trends from them. However, we suggest detailed comparison of various methods and rigorous testing thereof applying final orbital drift corrections.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nancy L. Shackell ◽  
David M. Keith ◽  
Heike K. Lotze

The United Nations Convention on Biological Diversity was established in 1993. Canada is a signatory nation that has adopted, and exceeded, the UN Aichi biodiversity target to protect 10% of coastal and marine areas through marine protected areas or “other effective area-based conservation measures” (OECMs) by 2020. However, the science of OECMs as contributors to biodiversity conservation is relatively young and their definition and efficacy testing continue to evolve. Here, we examine whether areas closed to fishing on the Scotian Shelf in Atlantic Canada, where the groundfish community had collapsed in the early 1990s, have the potential to serve as OECMs for groundfish recovery. Using long-term research survey data, we show that three long-term area-based fishing fleet closures did not enhance per capita population growth rates of the majority of 24 common groundfish species. At a regional scale, 10 out of 24 species are currently at less than 50% of their pre-collapse (1979–1992) biomass, reflecting a sustained diminished productivity, even though fishing mortality has been drastically reduced through a moratorium in 1993. Additional measures are needed to protect severely depleted groundfish, especially when the causes of continued diminished productivity are still largely unresolved. The importance of OECMs as a risk-averse approach toward sustainability is globally accepted and they can be considered a tool toward the overarching UN Sustainable Development Goals (SDG-14). Our study provides further impetus toward articulating the criteria of OECMs and improving their design, monitoring, and testing, while placing OECMs within the broader context of sustainable ecosystem-based management.


2020 ◽  
Vol 376 (1816) ◽  
pp. 20190726 ◽  
Author(s):  
A. Bevan ◽  
E. R. Crema

This paper responds to a resurgence of interest in constructing long-term time proxies of human activity, especially but not limited to models of population change over the Pleistocene and/or Holocene. While very much agreeing with the need for this increased attention, we emphasize three important issues that can all be thought of as modifiable reporting unit problems: the impact of (i) archaeological periodization, (ii) uneven event durations and (iii) geographical nucleation-dispersal phenomena. Drawing inspiration from real-world examples from prehistoric Britain, Greece and Japan, we explore their consequences and possible mitigation via a reproducible set of tactical simulations. This article is part of the theme issue ‘Cross-disciplinary approaches to prehistoric demography’.


Author(s):  
F. C. Çomut ◽  
A. Ustun ◽  
M. Lazecky ◽  
M. M. Aref

The SAR Interferometry (InSAR) application has shown great potential in monitoring of land terrain changes and in detection of land deformations such as subsidence. Longer time analysis can lead to understand longer trends and changes. Using different bands of SAR satellite (C- from ERS 1-2 and Envisat, L- from ALOS) over the study area, we achieve knowledge of movements in long-term and evaluation of its dynamic changes within observed period of time. Results from InSAR processing fit with the position changes in vertical direction based on GPS network established over the basin as an effective geodetic network. Time series (StaMPS PS+SB) of several points over Çumra County in eastern part of Konya City show a general trend of the deformation that is expected to be approximately between -13 to -17 mm/year. Northern part of Karaman is affected by faster subsidence, borders of the subsidence trough were identified from Envisat. <br><br> Presenting InSAR results together with GIS information about locations and time of occurrence of sudden subsidence, urban/industrial growth in time and climate changes helps in better understanding of the situation. This way, the impact of natural and man-made changes will be shown for urban planning thanks to InSAR and GIS comparisons with hydrogeological modeling. In this study we present results of differential and multitemporal InSAR series using different bands and GIS conjunction associated with seasonal and temporal groundwater level changes in Konya Closed Basin.


Sign in / Sign up

Export Citation Format

Share Document