scholarly journals Detection of Archaeological Looting from Space: Methods, Achievements and Challenges

2019 ◽  
Vol 11 (20) ◽  
pp. 2389 ◽  
Author(s):  
Deodato Tapete ◽  
Francesca Cigna

Illegal excavations in archaeological heritage sites (namely “looting”) are a global phenomenon. Satellite images are nowadays massively used by archaeologists to systematically document sites affected by looting. In parallel, remote sensing scientists are increasingly developing processing methods with a certain degree of automation to quantify looting using satellite imagery. To capture the state-of-the-art of this growing field of remote sensing, in this work 47 peer-reviewed research publications and grey literature are reviewed, accounting for: (i) the type of satellite data used, i.e., optical and synthetic aperture radar (SAR); (ii) properties of looting features utilized as proxies for damage assessment (e.g., shape, morphology, spectral signature); (iii) image processing workflows; and (iv) rationale for validation. Several scholars studied looting even prior to the conflicts recently affecting the Middle East and North Africa (MENA) region. Regardless of the method used for looting feature identification (either visual/manual, or with the aid of image processing), they preferred very high resolution (VHR) optical imagery, mainly black-and-white panchromatic, or pansharpened multispectral, whereas SAR is being used more recently by specialist image analysts only. Yet the full potential of VHR and high resolution (HR) multispectral information in optical imagery is to be exploited, with limited research studies testing spectral indices. To fill this gap, a range of looted sites across the MENA region are presented in this work, i.e., Lisht, Dashur, and Abusir el Malik (Egypt), and Tell Qarqur, Tell Jifar, Sergiopolis, Apamea, Dura Europos, and Tell Hizareen (Syria). The aim is to highlight: (i) the complementarity of HR multispectral data and VHR SAR with VHR optical imagery, (ii) usefulness of spectral profiles in the visible and near-infrared bands, and (iii) applicability of methods for multi-temporal change detection. Satellite data used for the demonstration include: HR multispectral imagery from the Copernicus Sentinel-2 constellation, VHR X-band SAR data from the COSMO-SkyMed mission, VHR panchromatic and multispectral WorldView-2 imagery, and further VHR optical data acquired by GeoEye-1, IKONOS-2, QuickBird-2, and WorldView-3, available through Google Earth. Commonalities between the different image processing methods are examined, alongside a critical discussion about automation in looting assessment, current lack of common practices in image processing, achievements in managing the uncertainty in looting feature interpretation, and current needs for more dissemination and user uptake. Directions toward sharing and harmonization of methodologies are outlined, and some proposals are made with regard to the aspects that the community working with satellite images should consider, in order to define best practices of satellite-based looting assessment.

Author(s):  
Ali Abdul Wahhab Mohammed ◽  
Hussein Thary Khamees

This paper has been utilized satellite Sentinel-2A imagery, this satellite is a polar-orbiting, multispectral high-resolution to cover Athens city, Greece that located at latitude (37° 58′ 46″) N, (23° 42′ 58″) E.,the work aims to measurement and study the wildfires natural resourcesbefore and after fire break out that happenedin forests of Athens city in Greece for a year (2007, 2018) and analysis the damage caused by these wildfiresand their impact on environment  and soil  by categorize the satellite images for the interested region before and after wildfires for a year (2007) and  a year (2018) and Discuss techniques that compute the area covered of each class and lessen  or limit the rapidly spreading wildfires damage.The categorizing utilizing the moments with (K-Means) grouping algorithm in RS (remote sensing). And the categorizing results show five unique classes (water, trees, buildings without tree, buildings with tree, bare lands) where, it can be notice that the region secured by each class before and after wildfires and the changed pixels for all classes.The experimental resulted of categorizing technique shows that the good performance exactness with a good categorizing and result analysisa bout the harms resulted from the fires in the forest Greece for a years (2007 and 2018).


Author(s):  
Herwin Alayn Huillcen Baca ◽  
Flor de Luz Palomino Valdivia ◽  
Julia Iraida Ortiz Guizado ◽  
Yalmar Ponce Atencio ◽  
Fidelia Tapia Tadeo

2018 ◽  
Vol 50 ◽  
pp. 02007
Author(s):  
Cecile Tondriaux ◽  
Anne Costard ◽  
Corinne Bertin ◽  
Sylvie Duthoit ◽  
Jérôme Hourdel ◽  
...  

In each winegrowing region, the winegrower tries to value its terroir and the oenologists do their best to produce the best wine. Thanks to new remote sensing techniques, it is possible to implement a segmentation of the vineyard according to the qualitative potential of the vine stocks and make the most of each terroir to improve wine quality. High resolution satellite images are processed in several spectral bands and algorithms set-up specifically for the Oenoview service allow to estimate vine vigour and a heterogeneity index that, used together, directly reflect the vineyard oenological potential. This service is used in different terroirs in France (Burgundy, Languedoc, Bordeaux, Anjou) and in other countries (Chile, Spain, Hungary and China). From this experience, we will show how remote sensing can help managing vine and wine production in all covered terroirs. Depending on the winegrowing region and its specificities, its use and results present some differences and similarities that we will highlight. We will give an overview of the method used, the advantage of implementing field intra-or inter-selection and how to optimize the use of amendment and sampling strategy as well as how to anticipate the whole vineyard management.


Author(s):  
B. X. Bai ◽  
Y. M. Tan ◽  
P. Wu

Abstract. Availability analysis of cloud-free optical remote sensing data is a prerequisite for remote sensing applications. In this study, spatio-temporal availability differences of cloud-free Landsat TM, ETM+, and OLI sensors images over Three Gorges Reservoir Area (TGRA) were analyzed from 1986 to 2019 based on the Google Earth Engine (GEE). The results show that: 1) in Summer, especially in August, the probabilities of obtaining Landsat images with no more than 30% cloud cover (CC) is higher. 2) the northeast of TGRA has higher probability of acquiring cloudless images than the southwest. 3) In TGRA, annual monitoring which require at least one cloud-free observation in a year largely unaffected by CC, but when considering seasonal monitoring, cloud contaminate will become a limitation, and monthly monitoring in this area is basically not feasible even if the three sensors data are combined. The results of this paper will provide important references for the research of using optical data in this area, and although the research area is relatively small, the analysis method and the program developed in this paper have no restrictions on the area.


2018 ◽  
Vol 10 (10) ◽  
pp. 1642 ◽  
Author(s):  
Kristof Van Tricht ◽  
Anne Gobin ◽  
Sven Gilliams ◽  
Isabelle Piccard

A timely inventory of agricultural areas and crop types is an essential requirement for ensuring global food security and allowing early crop monitoring practices. Satellite remote sensing has proven to be an increasingly more reliable tool to identify crop types. With the Copernicus program and its Sentinel satellites, a growing source of satellite remote sensing data is publicly available at no charge. Here, we used joint Sentinel-1 radar and Sentinel-2 optical imagery to create a crop map for Belgium. To ensure homogenous radar and optical inputs across the country, Sentinel-1 12-day backscatter mosaics were created after incidence angle normalization, and Sentinel-2 normalized difference vegetation index (NDVI) images were smoothed to yield 10-daily cloud-free mosaics. An optimized random forest classifier predicted the eight crop types with a maximum accuracy of 82% and a kappa coefficient of 0.77. We found that a combination of radar and optical imagery always outperformed a classification based on single-sensor inputs, and that classification performance increased throughout the season until July, when differences between crop types were largest. Furthermore, we showed that the concept of classification confidence derived from the random forest classifier provided insight into the reliability of the predicted class for each pixel, clearly showing that parcel borders have a lower classification confidence. We concluded that the synergistic use of radar and optical data for crop classification led to richer information increasing classification accuracies compared to optical-only classification. Further work should focus on object-level classification and crop monitoring to exploit the rich potential of combined radar and optical observations.


2019 ◽  
Vol 11 (19) ◽  
pp. 2191 ◽  
Author(s):  
Encarni Medina-Lopez ◽  
Leonardo Ureña-Fuentes

The aim of this work is to obtain high-resolution values of sea surface salinity (SSS) and temperature (SST) in the global ocean by using raw satellite data (i.e., without any band data pre-processing or atmospheric correction). Sentinel-2 Level 1-C Top of Atmosphere (TOA) reflectance data is used to obtain accurate SSS and SST information. A deep neural network is built to link the band information with in situ data from different buoys, vessels, drifters, and other platforms around the world. The neural network used in this paper includes shortcuts, providing an improved performance compared with the equivalent feed-forward architecture. The in situ information used as input for the network has been obtained from the Copernicus Marine In situ Service. Sentinel-2 platform-centred band data has been processed using Google Earth Engine in areas of 100 m × 100 m. Accurate salinity values are estimated for the first time independently of temperature. Salinity results rely only on direct satellite observations, although it presented a clear dependency on temperature ranges. Results show the neural network has good interpolation and extrapolation capabilities. Test results present correlation coefficients of 82 % and 84 % for salinity and temperature, respectively. The most common error for both SST and SSS is 0.4 ∘ C and 0 . 4 PSU. The sensitivity analysis shows that outliers are present in areas where the number of observations is very low. The network is finally applied over a complete Sentinel-2 tile, presenting sensible patterns for river-sea interaction, as well as seasonal variations. The methodology presented here is relevant for detailed coastal and oceanographic applications, reducing the time for data pre-processing, and it is applicable to a wide range of satellites, as the information is directly obtained from TOA data.


Sign in / Sign up

Export Citation Format

Share Document