scholarly journals Categorizing and measurement satellite image processing of fire in the forest greece using remote sensing

Author(s):  
Ali Abdul Wahhab Mohammed ◽  
Hussein Thary Khamees

This paper has been utilized satellite Sentinel-2A imagery, this satellite is a polar-orbiting, multispectral high-resolution to cover Athens city, Greece that located at latitude (37° 58′ 46″) N, (23° 42′ 58″) E.,the work aims to measurement and study the wildfires natural resourcesbefore and after fire break out that happenedin forests of Athens city in Greece for a year (2007, 2018) and analysis the damage caused by these wildfiresand their impact on environment  and soil  by categorize the satellite images for the interested region before and after wildfires for a year (2007) and  a year (2018) and Discuss techniques that compute the area covered of each class and lessen  or limit the rapidly spreading wildfires damage.The categorizing utilizing the moments with (K-Means) grouping algorithm in RS (remote sensing). And the categorizing results show five unique classes (water, trees, buildings without tree, buildings with tree, bare lands) where, it can be notice that the region secured by each class before and after wildfires and the changed pixels for all classes.The experimental resulted of categorizing technique shows that the good performance exactness with a good categorizing and result analysisa bout the harms resulted from the fires in the forest Greece for a years (2007 and 2018).

Author(s):  
Man Sing Wong ◽  
Xiaolin Zhu ◽  
Sawaid Abbas ◽  
Coco Yin Tung Kwok ◽  
Meilian Wang

AbstractApplications of Earth-observational remote sensing are rapidly increasing over urban areas. The latest regime shift from conventional urban development to smart-city development has triggered a rise in smart innovative technologies to complement spatial and temporal information in new urban design models. Remote sensing-based Earth-observations provide critical information to close the gaps between real and virtual models of urban developments. Remote sensing, itself, has rapidly evolved since the launch of the first Earth-observation satellite, Landsat, in 1972. Technological advancements over the years have gradually improved the ground resolution of satellite images, from 80 m in the 1970s to 0.3 m in the 2020s. Apart from the ground resolution, improvements have been made in many other aspects of satellite remote sensing. Also, the method and techniques of information extraction have advanced. However, to understand the latest developments and scope of information extraction, it is important to understand background information and major techniques of image processing. This chapter briefly describes the history of optical remote sensing, the basic operation of satellite image processing, advanced methods of object extraction for modern urban designs, various applications of remote sensing in urban or peri-urban settings, and future satellite missions and directions of urban remote sensing.


2019 ◽  
Vol 11 (20) ◽  
pp. 2389 ◽  
Author(s):  
Deodato Tapete ◽  
Francesca Cigna

Illegal excavations in archaeological heritage sites (namely “looting”) are a global phenomenon. Satellite images are nowadays massively used by archaeologists to systematically document sites affected by looting. In parallel, remote sensing scientists are increasingly developing processing methods with a certain degree of automation to quantify looting using satellite imagery. To capture the state-of-the-art of this growing field of remote sensing, in this work 47 peer-reviewed research publications and grey literature are reviewed, accounting for: (i) the type of satellite data used, i.e., optical and synthetic aperture radar (SAR); (ii) properties of looting features utilized as proxies for damage assessment (e.g., shape, morphology, spectral signature); (iii) image processing workflows; and (iv) rationale for validation. Several scholars studied looting even prior to the conflicts recently affecting the Middle East and North Africa (MENA) region. Regardless of the method used for looting feature identification (either visual/manual, or with the aid of image processing), they preferred very high resolution (VHR) optical imagery, mainly black-and-white panchromatic, or pansharpened multispectral, whereas SAR is being used more recently by specialist image analysts only. Yet the full potential of VHR and high resolution (HR) multispectral information in optical imagery is to be exploited, with limited research studies testing spectral indices. To fill this gap, a range of looted sites across the MENA region are presented in this work, i.e., Lisht, Dashur, and Abusir el Malik (Egypt), and Tell Qarqur, Tell Jifar, Sergiopolis, Apamea, Dura Europos, and Tell Hizareen (Syria). The aim is to highlight: (i) the complementarity of HR multispectral data and VHR SAR with VHR optical imagery, (ii) usefulness of spectral profiles in the visible and near-infrared bands, and (iii) applicability of methods for multi-temporal change detection. Satellite data used for the demonstration include: HR multispectral imagery from the Copernicus Sentinel-2 constellation, VHR X-band SAR data from the COSMO-SkyMed mission, VHR panchromatic and multispectral WorldView-2 imagery, and further VHR optical data acquired by GeoEye-1, IKONOS-2, QuickBird-2, and WorldView-3, available through Google Earth. Commonalities between the different image processing methods are examined, alongside a critical discussion about automation in looting assessment, current lack of common practices in image processing, achievements in managing the uncertainty in looting feature interpretation, and current needs for more dissemination and user uptake. Directions toward sharing and harmonization of methodologies are outlined, and some proposals are made with regard to the aspects that the community working with satellite images should consider, in order to define best practices of satellite-based looting assessment.


Author(s):  
K. M. Buddhiraju ◽  
L. N. Eeti ◽  
K. K. Tiwari

<p><strong>Abstract.</strong> With continuous increase in the utilization of satellite images in various engineering and science fields, it is imperative to equip students with additional educational aid in subject of satellite image processing and analysis. In this paper a web-based virtual laboratory, which is accessible via internet to anyone around the world with no cost or constraints, is presented. Features of the laboratory has been discussed in addition to details regarding system architecture and its implementation. Virtual laboratory is tested by students, whose responses are also presented in this paper. Future development of this laboratory is outlined in the end.</p>


2020 ◽  
Vol 10 (12) ◽  
pp. 4207 ◽  
Author(s):  
Anju Asokan ◽  
J. Anitha ◽  
Monica Ciobanu ◽  
Andrei Gabor ◽  
Antoanela Naaji ◽  
...  

Historical maps classification has become an important application in today’s scenario of everchanging land boundaries. Historical map changes include the change in boundaries of cities/states, vegetation regions, water bodies and so forth. Change detection in these regions are mainly carried out via satellite images. Hence, an extensive knowledge on satellite image processing is necessary for historical map classification applications. An exhaustive analysis on the merits and demerits of many satellite image processing methods are discussed in this paper. Though several computational methods are available, different methods perform differently for the various satellite image processing applications. Wrong selection of methods will lead to inferior results for a specific application. This work highlights the methods and the suitable satellite imaging methods associated with these applications. Several comparative analyses are also performed in this work to show the suitability of several methods. This work will help support the selection of innovative solutions for the different problems associated with satellite image processing applications.


Author(s):  
A. H. Ahrari ◽  
M. Kiavarz ◽  
M. Hasanlou ◽  
M. Marofi

Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar) and different decomposition filters (mean.linear,ma,min and rand) for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative) must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.


2020 ◽  
pp. 175
Author(s):  
Elena Sánchez-García ◽  
Ángel Balaguer-Beser ◽  
Josep Eliseu Pardo-Pascual

<p>The land-water boundary varies according to the sea level and the shape of a beach profile that is continuously modelled by incident waves. Attempting to model the response of a landscape as geomorphologically volatile as beaches requires multiple precise measurements to recognize responses to the actions of various geomorphic agents. It is therefore essential to have monitoring systems capable of systematically recording the shoreline accurately and effectively. New methods and tools are required to efficiently capture, characterize, and analyze information – and so obtain geomorphologically significant indicators. This is the aim of the doctoral thesis, focusing on the development of tools and procedures for coastal monitoring using satellite images and terrestrial photographs. The work brings satellite image processing and photogrammetric solutions to scientists, engineers, and coastal managers by providing results that demonstrate the usefulness of these viable and lowcost techniques. Existing and freely accessible public information (satellite images, video-derived data, or crowdsourced photographs) can be converted into high quality data for monitoring morphological changes on beaches and thus help achieve a sustainable management of coastal resources.</p>


Sign in / Sign up

Export Citation Format

Share Document