scholarly journals Comparing Johnson’s SB and Weibull Functions to Model the Diameter Distribution of Forest Plantations through ALS Data

2019 ◽  
Vol 11 (23) ◽  
pp. 2792 ◽  
Author(s):  
Diogo Nepomuceno Cosenza ◽  
Paula Soares ◽  
Juan Guerra-Hernández ◽  
Luísa Pereira ◽  
Eduardo González-Ferreiro ◽  
...  

The analysis of the diameter distribution is important for forest management since the knowledge of tree density and growing stock by diameter classes is essential to define management plans and to support operational decisions. The modeling of diameter distributions from airborne laser scanning (ALS) data has been performed through the two-parameter Weibull probability density function (PDF), but the more flexible PDF Johnson’s SB has never been tested for this purpose until now. This study evaluated the performance of the Johnson’s SB to predict the diameter distributions based on ALS data from two of the most common forest plantations in the northwest of the Iberian Peninsula (Eucalyptus globulus Labill. and Pinus radiata D. Don). The Weibull PDF was taken as a benchmark for the diameter distributions prediction and both PDFs were fitted with ALS data. The results show that the SB presented a comparable performance to the Weibull for both forest types. The SB presented a slightly better performance for the E. globulus, while the Weibull PDF had a small advantage when applied to the P. radiata data. The Johnson’s SB PDF is more flexible but also more sensitive to possible errors arising from the higher number of stand variables needed for the estimation of the PDF parameters.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Jussi Peuhkurinen ◽  
Timo Tokola ◽  
Kseniia Plevak ◽  
Sanna Sirparanta ◽  
Alexander Kedrov ◽  
...  

A tree list is a list of trees in the area of interest containing, for example, the species, diameter, height, and stem volume of each tree. Tree lists can be used to derive various characteristics of the growing stock, and are therefore versatile and informative sources of data for several forest management purposes. Especially in heterogonous and unmanaged forest structures with multiple species, tree list estimates imputed from local reference field data can provide an alternative to mean value estimates of growing stock (e.g., basal area, total stem volume, mean tree diameter, mean tree height, and number of trees). In this study, reference field plots, airborne laser scanning (ALS) data, and SPOT 5 satellite (Satellite Pour l’Observation de la Terre) imagery were used for tree list imputation applying the k most similar neighbors (k-MSN) estimation method in the West Ural taiga region of the Russian Federation for diameter distribution estimation. In k-MSN, weighted average of k field reference plots with highest similarity between field reference plot and target (forest grid cell, or field plot) based on ALS and SPOT 5 features were used to predict the mean values of growing stock and tree lists for the target object simultaneously. Diameter distributions were then constructed from the predicted tree lists. The prediction of mean values and diameter distributions was tested in 18 independent validation plots of 0.25–0.5 ha in size, whose species specific diameter distributions were measured in the field and grouped into three functional groups (Pines, Spruce/Fir, Broadleaf Group), each containing several species. In terms of root mean squared error relative to mean of validation plots, the accuracy of estimation was 0.14 and 0.17 for basal area and total stem volume, respectively. Reynolds error index values and visual inspection showed encouraging results in evaluating the goodness-of-fit statistics of the estimated diameter distributions. Although estimation accuracy was worse for functional group mean values and diameter distributions, the results indicate that it is possible to predict diameter distributions in forests of the test area with the tested methodology and materials.



2003 ◽  
Vol 33 (3) ◽  
pp. 430-434 ◽  
Author(s):  
Annika Kangas ◽  
Matti Maltamo

Diameter distribution of the growing stock is essential in many forest management planning problems. The diameter distribution is the basis for predicting, for example, timber assortments of a stand. Usually the predicted diameter distribution is scaled so that the stem number (or basal area) corresponds to the measured value (or predicted future value), but it may be difficult to obtain a distribution that gives correct estimates for all known variables. Diameter distributions that are compatible with all available information can be obtained using an approach adopted from sampling theory, the calibration estimation. In calibration estimation, the original predicted frequencies are modified so that they respect a set of constraints, the calibration equations. In this paper, an example of utilizing diameter distributions in growth and yield predictions is presented. The example is based on individual tree growth models of Scots pine (Pinus sylvestris L.). Calibration estimation was utilized in predicting the diameter distribution at the beginning of the simulation period. Then, trees were picked from the distribution and their development was predicted with individual tree models. In predicting the current stand characteristics, calibrated diameter distributions proved to be efficient. However, in predicting future yields, calibration estimation did not significantly improve the accuracy of the results.



2020 ◽  
Vol 50 (2) ◽  
pp. 113-125
Author(s):  
Janne Räty ◽  
Petteri Packalen ◽  
Eetu Kotivuori ◽  
Matti Maltamo

An area-based approach (ABA) is the most common method used to predict forest attributes with airborne laser scanning (ALS) data. Individual-tree detection (ITD) offers an alternative to ABA; however, few studies have examined the selection of these two alternatives for the prediction of diameter distributions. We predicted diameter distributions by applying ABA and ITD in coniferous-dominated boreal forests using ALS data and examined their predictive performance based on the shapes of the diameter distributions (Gaussian, bimodal, and reverse-J). We proposed an ABA–ITD fusion for diameter distribution prediction. Firstly, the fusion was optimized and its potential was evaluated using an error index. Secondly, we offer two alternatives to incorporate the fusion into ALS-based forest inventories. Our results indicate that ITD is more prone to errors than ABA and that the predictive performance of ITD is more sensitive than ABA to the shape of the diameter distribution. The results show that ITD outperforms ABA with Gaussian diameter distributions. In contrast, ABA was seen as preferable to ITD with bimodal- or reverse-J-shaped diameter distributions. The findings indicate that ABA–ITD fusion has potential for predicting diameter distributions, although the predictive capability of ITD is limited compared with that of ABA.



2008 ◽  
Vol 38 (7) ◽  
pp. 1750-1760 ◽  
Author(s):  
Petteri Packalén ◽  
Matti Maltamo

The use of diameter distributions originates from a need for tree-level description of forest stands, which is required, for example, in growth simulators and bucking. Diameter distribution models are usually applied, since measuring empirical diameter distributions in practical forest inventories is too laborious. This study investigated the ability of remote sensing information to predict species-specific diameter distributions. The study was carried out in Finland in a typical managed boreal forest area. The tree species considered were Scots pine ( Pinus sylvestris L.), Norway spruce ( Picea abies (L.) Karst.), and deciduous trees as a group. Growing stock was estimated using the k-MSN method using airborne laser scanning data and aerial photographs. Two approaches were compared: first, the nearest neighbour approach based on field measured trees was used as such to predict diameter distribution, and second, a theoretical diameter distribution approach in which the parameters of the Weibull distribution are predicted using the k-MSN estimates was applied. Basically, all test criteria indicated that the diameter distribution based on nearest neighbour imputed trees outperforms the Weibull distribution, but care must be taken to ensure that the modelling data are comprehensive enough.



1985 ◽  
Vol 15 (2) ◽  
pp. 474-476
Author(s):  
Donald J. Weatherhead ◽  
Roger C. Chapman ◽  
John H. Bassman

Balanced diameter distributions are widely used to describe stand structure goals for residual growing stock in uneven-aged forests. The quadratic mean diameter is frequently used as a descriptor of a balanced diameter distribution. In this paper the quadratic mean diameter is shown to be independent of stand basal area for balanced diameter distributions with a common class width, maximum and minimum diameters, and de Liocourt's q ratio. Additionally it is shown that the quadratic mean diameter is relatively insensitive to changes in maximum tree size and q ratios for q ratios 1.5 and larger.



Author(s):  
Karolina Parkitna ◽  
Grzegorz Krok ◽  
Stanisław Miścicki ◽  
Krzysztof Ukalski ◽  
Marek Lisańczuk ◽  
...  

Abstract Airborne laser scanning (ALS) is one of the most innovative remote sensing tools with a recognized important utility for characterizing forest stands. Currently, the most common ALS-based method applied in the estimation of forest stand characteristics is the area-based approach (ABA). The aim of this study was to analyse how three ABA methods affect growing stock volume (GSV) estimates at the sample plot and forest stand levels. We examined (1) an ABA with point cloud metrics, (2) an ABA with canopy height model (CHM) metrics and (3) an ABA with aggregated individual tree CHM-based metrics. What is more, three different modelling techniques: multiple linear regression, boosted regression trees and random forest, were applied to all ABA methods, which yielded a total of nine combinations to report. An important element of this work is also the empirical verification of the methods for estimating the GSV error for individual forest stand. All nine combinations of the ABA methods and different modelling techniques yielded very similar predictions of GSV for both sample plots and forest stands. The root mean squared error (RMSE) of estimated GSV ranged from 75 to 85 m3 ha−1 (RMSE% = 20.5–23.4 per cent) and from 57 to 64 m3 ha−1 (RMSE% = 16.4–18.3 per cent) for plots and stands, respectively. As a result of the research, it can be concluded that GSV modelling with the use of different ALS processing approaches and statistical methods leads to very similar results. Therefore, the choice of a GSV prediction method may be more determined by the availability of data and competences than by the requirement to use a particular method.



2020 ◽  
Author(s):  
Adrian Norman Goodwin

Abstract Diameter distribution models based on probability density functions are integral to many forest growth and yield systems, where they are used to estimate product volumes within diameter classes. The three-parameter Weibull function with a constrained nonnegative lower bound is commonly used because of its flexibility and ease of fitting. This study compared Weibull and reverse Weibull functions with and without a lower bound constraint and left-hand truncation, across three large unthinned plantation cohorts in which 81% of plots had negatively skewed diameter distributions. Near-optimal lower bounds for the unconstrained Weibull function were negative for negatively skewed data, and the left-truncated Weibull using these bounds was 14.2% more accurate than the constrained Weibull, based on the Kolmogorov-Smirnov statistic. The truncated reverse Weibull fit dominant tree distributions 23.7% more accurately than the constrained Weibull, based on a mean absolute difference statistic. This work indicates that a blind spot may have developed in plantation growth modeling systems deploying constrained Weibull functions, and that left-truncation of unconstrained functions could substantially improve model accuracy for negatively skewed distributions.



2008 ◽  
Vol 54 (1) ◽  
pp. 31-35
Author(s):  
Thomas G. Matney ◽  
Emily B. Schultz

Abstract Many growth and yield models have used statistical probability distributions to estimate the diameter distribution of a stand at any age. Equations for approximating individual tree diameter growth and survival probabilities from dbh can be derived from these models. A general procedure for determining the functions is discussed and illustrated using a loblolly pine spacing study. The results from the spacing study show that it is possible to define tree diameter growth and survival probability functions from diameter distributions with an accuracy sufficient to obtain a link between the individual tree and diameter growth and yield models.



2000 ◽  
Vol 30 (4) ◽  
pp. 521-533 ◽  
Author(s):  
Jeffrey H Gove

This paper revisits the link between assumed diameter distributions arising from horizontal point samples and their unbiased stand-based representation through weighted distribution theory. Examples are presented, which show that the assumption of a common shared parameter set between these two distributional forms, while theoretically valid, may not be reasonable in many operational cases. Simulation results are presented, which relate the conformity (or lack thereof) in these estimates to sampling intensity per point and the underlying shape of the population diameter distribution from which the sample point was drawn. In general, larger sample sizes per point are required to yield reliable parameter estimates than are generally taken for inventory purposes. In addition, a complimentary finding suggests that the more positively skewed the underlying distribution, the more trees per point are required for good parameter estimates.



Author(s):  
Shuhei Inoue ◽  
Takeshi Nakajima ◽  
Kazuya Nomura ◽  
Yoshihiro Kikuchi

Single-walled carbon nanotubes are considered the most attractive material and a lot of synthesis processes are developed. Among these synthesis processes chemical vapor deposition processes are considered to be most suitable for macroscopic production. In many CVD processes the alcohol catalytic CVD process can be the best process because it can produce very pure nanotubes without any purification. However, cobalt is essential as a catalyst that makes the flexibility of catalysts restricted. In this paper, our investigation mainly focused on as follows: The efficiency of combined catalysts with/without cobalt. The diameter distributions against catalysts density. The electrical states of catalysts near Fermi level. Consequently, almost all of cobalt containing catalysts worked well, and the diameter distributions were proportional to the particle size. Efficient catalysts had enough states around Fermi level and the cobalt-less efficient catalyst cluster model showed the similar density of state to the cobalt cluster. Thus, noticing to the DOS, other efficient catalysts can be discovered and the diameter distribution will be controllable by adjusting temperature, a catalyst size, and a catalyst combination without any complicated techniques and facilities.



Sign in / Sign up

Export Citation Format

Share Document