scholarly journals Satellite Altimetry and Tide Gauge Observed Teleconnections between Long-Term Sea Level Variability in the U.S. East Coast and the North Atlantic Ocean

2019 ◽  
Vol 11 (23) ◽  
pp. 2816
Author(s):  
Qing Xu ◽  
Kai Tu ◽  
Yongcun Cheng ◽  
Weiping Wang ◽  
Yongjun Jia ◽  
...  

Rising sea levels amplify the threat and magnitude of storm surges in coastal areas. The U.S. east coast region north of Cape Hatteras has shown a significant sea level rise acceleration and is believed to be a “hot-spot” for accelerating tidal flooding. To better understand the forcing mechanism of long-term regional sea level change, in order to more efficiently implement local sea level rise adaptation and mitigation measures, this work investigated the teleconnections between low-frequency sea level variability in the coastal region north of Cape Hatteras and the subpolar/tropical North Atlantic Ocean by using tide gauge measurements, satellite altimetry data and a sea level reconstruction dataset. The correlation analysis demonstrates that the tide-gauge measured sea level variability in the area north of Cape Hatteras is highly and positively correlated with that observed by satellite altimetry in the subpolar and tropical North Atlantic between 1993 and 2002. Over the following decade (2003–2012), the phase of the teleconnection in the subpolar region was reversed and the spatio-temporal correlation in the tropical North Atlantic was enhanced. Furthermore, the positive correlation in the region north of Cape Hatteras’s near shore area is strengthened, while the negative correlation in the Gulf Stream front region is weakened. The North Atlantic Oscillation and Atlantic Multidecadal Oscillation, which affect variations of the Atlantic Meridional Overturning Circulation and Gulf Stream, were shown to have significant impacts on the decadal changes of the teleconnections. Coherent with satellite altimetry data, the reconstructed sea level dataset in the 20th century exhibits similar spatial correlation patterns with the Atlantic Meridional Overturning Circulation, North Atlantic Oscillation and Atlantic Multidecadal Oscillation indices.

2009 ◽  
Vol 5 (2) ◽  
pp. 1163-1185
Author(s):  
Y.-X. Li ◽  
H. Renssen ◽  
A. P. Wiersma ◽  
T. E. Törnqvist

Abstract. The 8.2 ka event is the most prominent abrupt climate change in the Holocene and is widely believed to result from catastrophic drainage of proglacial lakes Agassiz and Ojibway (LAO) that routed through the Hudson Bay and the Labrador Sea into the North Atlantic Ocean, and perturbed Atlantic meridional overturning circulation (MOC). One key assumption of this triggering mechanism is that the LAO freshwater drainage was spread over the Labrador Sea. Recent data, however, show no evidence of lowered δ18O values from the open Labrador Sea around 8.2 ka. Instead, negative δ18O anomalies are found close to the east coast of North America, extending as far south as Cape Hatteras, North Carolina, suggesting that the freshwater drainage was probably confined to a long stretch of continental shelf before fully mixing with North Atlantic Ocean water. Here we conduct a sensitivity study that examines the effects of this southerly drainage route on the 8.2 ka event with the ECBilt-CLIO-VECODE model. Hosing experiments of four different routing scenarios, where freshwater was introduced to the Labrador Sea in the northerly route (R1) and to three different locations (Grand Banks – R2, George Bank – R3, and Cape Hatteras – R4) on the southerly route, were performed with 0.45 m sea-level equivalent (SLE), 0.90 m SLE, and 1.35 m SLE of freshwater introduced over 5 years to investigate the routing effects on model responses. The modelling results show that a southerly drainage route is plausible but generally yields reduced climatic consequences in comparison to those of a northerly route. This finding implies that more freshwater would be required for a southerly route than for a northerly route to produce the same climate anomaly.


2021 ◽  
Author(s):  
Fabio Mangini ◽  
Antonio Bonaduce ◽  
Léon Chafik ◽  
Laurent Bertino

<p>Satellite altimetry measurements, complemented by in-situ records, have made a fundamental contribution to the understanding of global sea level variability for almost 30 years. Due to land contamination, it performs best over the open ocean. However, over the years, there has been a significant effort to improve the altimetry products in coastal regions. Indeed, altimetry observations could be fruitfully used in the coastal zone to complement the existing tide gauge network which, despite its relevance, does not represent the entire coast. Given the important role of coastal altimetry in oceanography, we have recently decided to check the quality of a new coastal altimetry dataset, ALES, along the coast of Norway. The Norwegian coast is well covered by tide gauges and, therefore, particularly suitable to validate a coastal altimetry dataset. Preliminary results show a good agreement between in-situ and remote sensing sea-level signals in terms of linear trend, seasonal cycle and inter-annual variability. For example, the linear correlation coefficient between the inter-annual sea level variability from altimetry and tide gauges exceeds 0.8. Likewise, the root mean square difference between the two is less than 2 cm at most tide gauge locations. A comparison with Breili et al. (2017) shows that ALES performs better than the standard satellite altimetry products at estimating sea level trends along the coast of Norway. Notably, in the Lofoten region, the difference between the sea level trends computed using ALES and the tide gauges range between 0.0 to 0.7 mm/year, compared to circa 1 to 3 mm/year found by Breili et al. (2017). These preliminary results go in the direction of obtaining an accurate characterization of coastal sea-level at the high latitudes based on coastal altimetry records, which can represent a valuable source of information to reconstruct coastal sea-level signals in areas where in-situ data are missing or inaccurate.</p>


Climate ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 43 ◽  
Author(s):  
Knut Lehre Seip ◽  
Øyvind Grøn ◽  
Hui Wang

We show that oceanic cycle lengths persist across oceanic cyclic time-series by comparing cycles in series that come from “sister” measurements in the North Atlantic Ocean. These are the North Atlantic oscillation (NAO), the Atlantic multidecadal oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC). The raw NAO series, which is an extremely noisy series in its raw format, showed cycles at 7, 13, 20, 26 and 34 years that were common with, or overlapped, the other two series, and across increasing degrees of smoothing of the NAO series. At the 1960 midpoint of the hiatus period 1943–1975, NAO was leading time-series to AMOC and AMO and AMO was a leading time-series to AMOC, but in 1975, at the end of the hiatus period, the leading relations were reversed.


2012 ◽  
Vol 25 (20) ◽  
pp. 6989-7002 ◽  
Author(s):  
Wei Wei ◽  
Gerrit Lohmann

Abstract The Atlantic multidecadal oscillation (AMO) and its possible change during the Holocene are examined in this study, using long-term simulations of the earth system model Community Earth System Models (COSMOS). A quasi-persistent ~55–80-yr cycle characterizing in the North Atlantic sea surface temperature is highly associated with the multidecadal variability of the Atlantic meridional overturning circulation (AMOC) during the Holocene. This mode can be found throughout the Holocene, indicating that the AMO is dominated by internal climate variability. Stronger-than-normal AMOC results in warmer-than-normal surface temperature spreading over almost the whole North Hemisphere, in particular the North Atlantic Ocean. During the warm phase of the AMO, more precipitation is detected in the North Atlantic low and high latitudes. It also generates a dipolar seesaw pattern in the sea ice anomaly. The results reveal that the influence of the AMO can be amplified by a more vigorous AMOC variability during the early Holocene in the presence of a remnant of the Laurentide Ice Sheet and when freshwater entered the North Atlantic Ocean. This conclusion could have potential application for the past AMO reconstruction and the future AMO estimation.


Author(s):  
Dina A Sarsito ◽  
Muhammad Syahrullah ◽  
Dudy D Wijaya ◽  
Dhota Pradipta ◽  
Heri Andreas

2001 ◽  
Vol 24 (1) ◽  
pp. 53-63 ◽  
Author(s):  
S. K. Singh ◽  
Sujit Basu ◽  
Raj Kumar ◽  
Vijay K. Agarwal

Sign in / Sign up

Export Citation Format

Share Document