scholarly journals Temporal Patterns in Illumination Conditions and Its Effect on Vegetation Indices Using Landsat on Google Earth Engine

2020 ◽  
Vol 12 (2) ◽  
pp. 211 ◽  
Author(s):  
Pablo Martín-Ortega ◽  
Luis Gonzaga García-Montero ◽  
Nicole Sibelet

Vegetation indices (VI) describe vegetation structure and functioning but they are affected by illumination conditions (IC). Moreover, the fact that the effect of the IC on VI can be stronger than other biophysical or seasonal processes is under debate. Using Google Earth Engine and the latest Landsat Surface Reflectance level 1 data, we evaluated the temporal patterns of IC and two VI, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) in a mountainous tropical forest during the years 1984–2017. We evaluated IC and VI at different times, their relationship with the topography and the correlations between them. We show that IC is useful for understanding the patterns of variation between VI and IC at the pixel level using Landsat sensors. Our findings confirmed a strong correlation between EVI and IC and less between NDVI and IC. We found a significant increase in IC, EVI, and NDVI throughout time due to an improvement in the position of all Landsat sensors. Our results reinforce the need to consider IC to interpret VI over long periods using Landsat data in order to increase the precision of monitoring VI in irregular topography.

2020 ◽  
Vol 9 (4) ◽  
pp. 257 ◽  
Author(s):  
Kiwon Lee ◽  
Kwangseob Kim ◽  
Sun-Gu Lee ◽  
Yongseung Kim

Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However, multispectral KOMPSAT-3A images with a resolution of 2.2 m are currently lacking tools or open-source resources for obtaining top-of-canopy (TOC) reflectance data. In this study, an atmospheric correction module for KOMPSAT-3A images was newly implemented into the optical calibration algorithm in the Orfeo Toolbox (OTB), with a sensor model and spectral response data for KOMPSAT-3A. Using this module, named OTB extension for KOMPSAT-3A, experiments on the normalized difference vegetation index (NDVI) were conducted based on TOC reflectance data with or without aerosol properties from AERONET. The NDVI results for these atmospherically corrected data were compared with those from the dark object subtraction (DOS) scheme, a relative atmospheric correction method. The NDVI results obtained using TOC reflectance with or without the AERONET data were considerably different from the results obtained from the DOS scheme and the Landsat-8 surface reflectance of the Google Earth Engine (GEE). It was found that the utilization of the aerosol parameter of the AERONET data affects the NDVI results for KOMPSAT-3A images. The TOC reflectance of high-resolution satellite imagery ensures further precise analysis and the detailed interpretation of urban forestry or complex vegetation features.


2019 ◽  
Vol 11 (15) ◽  
pp. 1823 ◽  
Author(s):  
Xiaojuan Huang ◽  
Jingfeng Xiao ◽  
Mingguo Ma

Satellite-derived vegetation indices (VIs) have been widely used to approximate or estimate gross primary productivity (GPP). However, it remains unclear how the VI-GPP relationship varies with indices, biomes, timescales, and the bidirectional reflectance distribution function (BRDF) effect. We examined the relationship between VIs and GPP for 121 FLUXNET sites across the globe and assessed how the VI-GPP relationship varied among a variety of biomes at both monthly and annual timescales. We used three widely-used VIs: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and 2-band EVI (EVI2) as well as a new VI - NIRV and used surface reflectance both with and without BRDF correction from the moderate resolution imaging spectroradiometer (MODIS) to calculate these indices. The resulting traditional (NDVI, EVI, EVI2, and NIRV) and BRDF-corrected (NDVIBRDF, EVIBRDF, EVI2BRDF, and NIRV, BRDF) VIs were used to examine the VI-GPP relationship. At the monthly scale, all VIs were moderate or strong predictors of GPP, and the BRDF correction improved their performance. EVI2BRDF and NIRV, BRDF had similar performance in capturing the variations in tower GPP as did the MODIS GPP product. The VIs explained lower variance in tower GPP at the annual scale than at the monthly scale. The BRDF-correction of surface reflectance did not improve the VI-GPP relationship at the annual scale. The VIs had similar capability in capturing the interannual variability in tower GPP as MODIS GPP. VIs were influenced by temperature and water stresses and were more sensitive to temperature stress than to water stress. VIs in combination with environmental factors could improve the prediction of GPP than VIs alone. Our findings can help us better understand how the VI-GPP relationship varies among indices, biomes, and timescales and how the BRDF effect influences the VI-GPP relationship.


2021 ◽  
Vol 936 (1) ◽  
pp. 012038
Author(s):  
Benedict ◽  
Lalu Muhamad Jaelani

Abstract Java is Indonesia’s and the world’s most populous island. The increase in population on the island of Java reduces the area of forest and other vegetation covers. Landslides, floods, and other natural disasters are caused by reduced vegetation cover. Furthermore, it has the potential to lead to the extinction of flora and fauna. The Normalized Difference Vegetation Index (NDVI) can be used to monitor the vegetation cover. This study analyzes the NDVI changes value from 2005 to 2020 using Terra and Aqua MODIS image data processed using Google Earth Engine. Processing was carried out in some stages: down-setting, performing NDVI processing, calculating monthly average NDVI, calculating annual average NDVI, and analyzing. From the study results, the NDVI value of Terra and Aqua MODIS data has a solid but imperfect correlation coefficient due to differences in orbital time which causes differences in solar zenith angle, sensor viewing angle, and azimuth angle. Then from this study, it was found that overall, changes in vegetation density cover on the island of Java decreased, which was indicated by the NDVI decline rate of -0.00047/year. The most significant decrease in NDVI value occurred in the period 2015–2016, covering an area of 13994.630 km2, and the most significant increase in NDVI occurred in the period 2010–2011, covering an area of 2256.101 km2.


2021 ◽  
Vol 21 (5) ◽  
pp. 1495-1511
Author(s):  
Corey M. Scheip ◽  
Karl W. Wegmann

Abstract. Modern satellite networks with rapid image acquisition cycles allow for near-real-time imaging of areas impacted by natural hazards such as mass wasting, flooding, and volcanic eruptions. Publicly accessible multi-spectral datasets (e.g., Landsat, Sentinel-2) are particularly helpful in analyzing the spatial extent of disturbances, however, the datasets are large and require intensive processing on high-powered computers by trained analysts. HazMapper is an open-access hazard mapping application developed in Google Earth Engine that allows users to derive map and GIS-based products from Sentinel or Landsat datasets without the time- and cost-intensive resources required for traditional analysis. The first iteration of HazMapper relies on a vegetation-based metric, the relative difference in the normalized difference vegetation index (rdNDVI), to identify areas on the landscape where vegetation was removed following a natural disaster. Because of the vegetation-based metric, the tool is typically not suitable for use in desert or polar regions. HazMapper is not a semi-automated routine but makes rapid and repeatable analysis and visualization feasible for both recent and historical natural disasters. Case studies are included for the identification of landslides and debris flows, wildfires, pyroclastic flows, and lava flow inundation. HazMapper is intended for use by both scientists and non-scientists, such as emergency managers and public safety decision-makers.


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Mazlan Hashim ◽  
Sharifeh Hazini

Separation of different vegetation types in satellite images is a critical issue in remote sensing. This is because of the close reflectance between different vegetation types that it makes difficult segregation of them in satellite images. In this study, to facilitate this problem, different satellite derived vegetation indices including: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Enhanced Vegetation Index 2 (EVI2) were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat-5 TM data. The obtained NDVI, EVI, and EVI2 images were then analyzed and interpreted in order to evaluate their effectiveness to discriminate rice and citrus fields from ASTER and Landsat data. In doing so, the Density Slicing (DS) classification technique followed by the trial and error method was implemented. The results indicated that the accuracies of ASTER NDVI and ASTER EVI2 for citrus mapping are about 75% and 65%, while the accuracies of Landsat NDVI and Landsat EVI for rice mapping are about 60% and 65%, respectively. The achieved results demonstrated higher performance of ASTER NDVI for citrus mapping and Landsat EVI for rice mapping. The study concluded that it is difficult to detect and map rice fields from satellite images using satellite-derived indices with high accuracy. However, the citrus fields can be mapped with the higher accuracy using satellite-derived indices.


2020 ◽  
Vol 12 (18) ◽  
pp. 2879
Author(s):  
Valentine Aubard ◽  
João E. Pereira-Pires ◽  
Manuel L. Campagnolo ◽  
José M. C. Pereira ◽  
André Mora ◽  
...  

Fuel break (FB) networks are strategic locations for fire control and suppression. In order to be effective for wildfire control, they need to be maintained through regular interventions to reduce fuel loads. In this paper, we describe a monitoring system relying on Earth observations to detect fuel reduction inside the FB network being implemented in Portugal. Two fast automated pixel-based methodologies for monthly monitoring of fuel removals in FB are developed and compared. The first method (M1) is a classical supervised classification using the difference and postdisturbance image of monthly image composites. To take into account the impact of different land cover and phenology in the detection of fuel treatments, a second method (M2) based on an innovative statistical change detection approach was developed. M2 explores time series of vegetation indices and does not require training data or user-defined thresholds. The two algorithms were applied to Sentinel-2 10 m bands and fully processed in the cloud-based platform Google Earth Engine. Overall, the unsupervised M2, which is based on a Welch t-test of two moving window averages, gives better results than the supervised M1 and is suitable for an automated countrywide fuel treatment detection. For both methods, two vegetation indices, the Modified Excess of Green and the Normalized Difference Vegetation Index, were compared and exhibited similar performances.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 760
Author(s):  
Sifiso Xulu ◽  
Philani T. Phungula ◽  
Nkanyiso Mbatha ◽  
Inocent Moyo

This study was devised to examine the pattern of disturbance and reclamation by Tronox, which instigated a closure process for its Hillendale mine site in South Africa, where they recovered zirconium- and titanium-bearing minerals from 2001 to 2013. Restoring mined-out areas is of great importance in South Africa, with its ominous record of almost 6000 abandoned mines since the 1860s. In 2002, the government enacted the Mineral and Petroleum Resources Development Act (No. 28 of 2002) to enforce extracting companies to restore mined-out areas before pursuing closure permits. Thus, the trajectory of the Hillendale mine remains unstudied despite advances in the satellite remote sensing technology that is widely used in this field. Here, we retrieved a collection of Landsat-derived normalized difference vegetation index (NDVI) within the Google Earth Engine and applied the Detecting Breakpoints and Estimating Segments in Trend (DBEST) algorithm to examine the progress of vegetation transformation over the Hillendale mine between 2001 and 2019. Our results showed key breakpoints in NDVI, a drop from 2001, reaching the lowest point in 2009–2011, with a marked recovery pattern after 2013 when the restoration program started. We also validated our results using a random forests strategy that separated vegetated and non-vegetated areas with an accuracy exceeding 78%. Overall, our findings are expected to encourage users to replicate this affordable application, particularly in emerging countries with similar cases.


2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Changchun Li ◽  
Weinan Chen ◽  
Yilin Wang ◽  
Yu Wang ◽  
Chunyan Ma ◽  
...  

The timely and accurate acquisition of winter wheat acreage is crucial for food security. This study investigated the feasibility of extracting the spatial distribution map of winter wheat in Henan Province by using synthetic aperture radar (SAR, Sentinel-1A) and optical (Sentinel-2) images. Firstly, the SAR images were aggregated based on the growth period of winter wheat, and the optical images were aggregated based on the moderate resolution imaging spectroradiometer normalized difference vegetation index (MODIS-NDVI) curve. Then, five spectral features, two polarization features, and four texture features were selected as feature variables. Finally, the Google Earth Engine (GEE) cloud platform was employed to extract winter wheat acreage through the random forest (RF) algorithm. The results show that: (1) aggregated images based on the growth period of winter wheat and sensor characteristics can improve the mapping accuracy and efficiency; (2) the extraction accuracy of using only SAR images was improved with the accumulation of growth period. The extraction accuracy of using the SAR images in the full growth period reached 80.1%; and (3) the identification effect of integrated images was relatively good, which makes up for the shortcomings of SAR and optical images and improves the extraction accuracy of winter wheat.


2021 ◽  
Vol 10 (1) ◽  
pp. e51210112060
Author(s):  
Raimara Reis do Rosário ◽  
Mateus Trindade Barbosa ◽  
Francimary da Silva Carneiro ◽  
Merilene do Socorro Silva Costa

O objetivo foi analisar o processo de uso e ocupação do solo do município de Novo Progresso no Estado do Pará, interligando-o com as atividades de maior importância econômica desenvolvidas nesta região. Utilizou-se o shapefile de limite do município de Novo Progresso na plataforma online Google Earth Engine (GEE), que disponibilizou um mosaico de imagens orbitais, do satélite Landsat-8/OLI-TIRS, referentes ao ano de 2019. O processo de classificação foi feito a partir do Code Editor do GEE, utilizando um Índice espectral de vegetação para auxiliar a classificação (Normalized Difference Vegetation Index – NDVI). Foi utilizado o Software QGis 3.10.6 para elaborar os mapas de localização do município e o de classificação de uso e cobertura do solo. Os dados foram tabulados em planilhas para determinar as taxas de crescimento do período analisado. Para realizar a avaliação da confiabilidade da classificação foi utilizado o método de Exatidão Global e o Índice Kappa. Foi possível identificar que no ano de 2019, houve a incidência de 3.064.396,65 ha (80,3%) de floresta densa, uma área de 496.104,07 ha (13,0%) com solo exposto, 248.052,03 ha (6,5%) de floresta secundária, e apenas 7.632,37 ha (0,2%) com predominância de hidrografia, totalizando uma área de 3.816.185,13 ha.  As áreas que encontram-se com o solo exposto não estão diretamente relacionadas com o crescimento populacional, mas sim a forma como é estabelecido o uso do solo, com base nas principais atividades desenvolvidas na região considerando que a lógica produtiva ocorre de forma desordenada, não respeitando os critérios de desenvolvimento sustentável.


2020 ◽  
Vol 12 (16) ◽  
pp. 6497
Author(s):  
Zhengrong Liu ◽  
Huanjun Liu ◽  
Chong Luo ◽  
Haoxuan Yang ◽  
Xiangtian Meng ◽  
...  

Remote sensing has been used as an important tool for disaster monitoring and disaster scope extraction, especially for the analysis of spatial and temporal disaster patterns of large-scale and long-duration series. Google Earth Engine provides the possibility of quickly extracting the disaster range over a large area. Based on the Google Earth Engine cloud platform, this study used MODIS vegetation index products with 250-m spatial resolution synthesized over 16 days from the period 2005–2019 to develop a rapid and effective method for monitoring disasters across a wide spatiotemporal range. Three types of disaster monitoring and scope extraction models are proposed: the normalized difference vegetation index (NDVI) median time standardization model (RNDVI_TM(i)), the NDVI median phenology standardization model (RNDVI_AM(i)(j)), and the NDVI median spatiotemporal standardization model (RNDVI_ZM(i)(j)). The optimal disaster extraction threshold for each model in different time phases was determined using Otsu’s method, and the extraction results were verified by medium-resolution images and ground-measured data of the same or quasi-same period. Finally, the disaster scope of cultivated land in Heilongjiang Province from 2010–2019 was extracted, and the spatial and temporal patterns of the disasters were analyzed based on meteorological data. This analysis revealed that the three aforementioned models exhibited high disaster monitoring and range extraction capabilities, with verification accuracies of 97.46%, 96.90%, and 96.67% for RNDVI_TM(i), RNDVI_AM(i), and (j)RNDVI_ZM(i)(j), respectively. The spatial and temporal disaster distributions were found to be consistent with the disasters of the insured plots and the meteorological data across the entire province. Moreover, different monitoring and extraction methods were used for different disasters, among which wind hazard and insect disasters often required a delay of 16 days prior to observation. Each model also displayed various sensitivities and was applicable to different disasters. Compared with other techniques, the proposed method is fast and easy to implement. This new approach can be applied to numerous types of disaster monitoring as well as large-scale agricultural disaster monitoring and can easily be applied to other research areas. This study presents a novel method for large-scale agricultural disaster monitoring.


Sign in / Sign up

Export Citation Format

Share Document