scholarly journals Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation

2020 ◽  
Vol 12 (2) ◽  
pp. 294 ◽  
Author(s):  
Aliihsan Sekertekin ◽  
Stefania Bonafoni

Land Surface Temperature (LST) is an important parameter for many scientific disciplines since it affects the interaction between the land and the atmosphere. Many LST retrieval algorithms based on remotely sensed images have been introduced so far, where the Land Surface Emissivity (LSE) is one of the main factors affecting the accuracy of the LST estimation. The aim of this study is to evaluate the performance of LST retrieval methods using different LSE models and data of old and current Landsat missions. Mono Window Algorithm (MWA), Radiative Transfer Equation (RTE) method, Single Channel Algorithm (SCA) and Split Window Algorithm (SWA) were assessed as LST retrieval methods processing data of Landsat missions (Landsat 5, 7 and 8) over rural pixels. Considering the LSE models introduced in the literature, different Normalized Difference Vegetation Index (NDVI)-based LSE models were investigated in this study. Specifically, three LSE models were considered for the LST estimation from Landsat 5 Thematic Mapper (TM) and seven Enhanced Thematic Mapper Plus (ETM+), and six for Landsat 8. For the accurate evaluation of the estimated LST, in-situ LST data were obtained from the Surface Radiation Budget Network (SURFRAD) stations. In total, forty-five daytime Landsat images; fifteen images for each Landsat mission, acquired in the Spring-Summer-Autumn period in the mid-latitude region in the Northern Hemisphere were acquired over five SURFRAD rural sites. After determining the best LSE model for the study case, firstly, the LST retrieval accuracy was evaluated considering the sensor type: when using Landsat 5 TM, 7 ETM+, and 8 Operational Land Imager (OLI), and Thermal Infrared Sensor (TIRS) data separately, RTE, MWA, and MWA presented the best results, respectively. Then, the performance was evaluated independently of the sensor types. In this case, all LST methods provided satisfying results, with MWA having a slightly better accuracy with a Root Mean Square Error (RMSE) equals to 2.39 K and a lower bias error. In addition, the spatio-temporal and seasonal analyses indicated that RTE and SCA presented similar results regardless of the season, while MWA differed from RTE and SCA for all seasons, especially in summer. To efficiently perform this work, an ArcGIS toolbox, including all the methods and models analyzed here, was implemented and provided as a user facility for the LST retrieval from Landsat data.

2020 ◽  
Vol 12 (17) ◽  
pp. 2776 ◽  
Author(s):  
Aliihsan Sekertekin ◽  
Stefania Bonafoni

Land Surface Temperature (LST) is a substantial element indicating the relationship between the atmosphere and the land. This study aims to examine the efficiency of different LST algorithms, namely, Single Channel Algorithm (SCA), Mono Window Algorithm (MWA), and Radiative Transfer Equation (RTE), using both daytime and nighttime Landsat 8 data and in-situ measurements. Although many researchers conducted validation studies of daytime LST retrieved from Landsat 8 data, none of them considered nighttime LST retrieval and validation because of the lack of Land Surface Emissivity (LSE) data in the nighttime. Thus, in this paper, we propose using a daytime LSE image, whose acquisition is close to nighttime Thermal Infrared (TIR) data (the difference ranges from one day to four days), as an input in the algorithm for the nighttime LST retrieval. In addition to evaluating the three LST methods, we also investigated the effect of six Normalized Difference Vegetation Index (NDVI)-based LSE models in this study. Furthermore, sensitivity analyses were carried out for both in-situ measurements and LST methods for satellite data. Simultaneous ground-based LST measurements were collected from Atmospheric Radiation Measurement (ARM) and Surface Radiation Budget Network (SURFRAD) stations, located at different rural environments of the United States. Concerning the in-situ sensitivity results, the effect on LST of the uncertainty of the downwelling and upwelling radiance was almost identical in daytime and nighttime. Instead, the uncertainty effect of the broadband emissivity in the nighttime was half of the daytime. Concerning the satellite observations, the sensitivity of the LST methods to LSE proved that the variation of the LST error was smaller than daytime. The accuracy of the LST retrieval methods for daytime Landsat 8 data varied between 2.17 K Root Mean Square Error (RMSE) and 5.47 K RMSE considering all LST methods and LSE models. MWA with two different LSE models presented the best results for the daytime. Concerning the nighttime accuracy of the LST retrieval, the RMSE value ranged from 0.94 K to 3.34 K. SCA showed the best results, but MWA and RTE also provided very high accuracy. Compared to daytime, all LST retrieval methods applied to nighttime data provided highly accurate results with the different LSE models and a lower bias with respect to in-situ measurements.


Author(s):  
Yue Jiang ◽  
WenPeng Lin

In the trend of global warming and urbanization, frequent extreme weather has a severe impact on the lives of citizens. Land Surface Temperature (LST) is an essential climate variable and a vital parameter for land surface processes at local and global scales. Retrieving LST from global, regional, and city-scale thermal infrared remote sensing data has unparalleled advantages and is one of the most common methods used to study urban heat island effects. Different algorithms have been developed for retrieving LST using satellite imagery, such as the Radiative Transfer Equation (RTE), Mono-Window Algorithm (MWA), Split-Window Algorithm (SWA), and Single-Channel Algorithm (SCA). A case study was performed in Shanghai to evaluate these existing algorithms in the retrieval of LST from Landsat-8 images. To evaluate the estimated LST accurately, measured data from meteorological stations and the MOD11A2 product were used for validation. The results showed that the four algorithms could achieve good results in retrieving LST, and the LST retrieval results were generally consistent within a spatial scale. SWA is more suitable for retrieving LST in Shanghai during the summer, a season when the temperature and the humidity are both very high in Shanghai. Highest retrieval accuracy could be seen in cultivated land, vegetation, wetland, and water body. SWA was more sensitive to the error caused by land surface emissivity (LSE). In low temperature and a dry winter, RTE, SWA, and SCA are relatively more reliable. Both RTE and SCA were sensitive to the error caused by atmospheric water vapor content. These results can provide a reasonable reference for the selection of LST retrieval algorithms for different periods in Shanghai.


2020 ◽  
Vol 12 (3) ◽  
pp. 416
Author(s):  
Jonathan Miller ◽  
Aaron Gerace ◽  
Rehman Eon ◽  
Matthew Montanaro ◽  
Robert Kremens ◽  
...  

Land Surface Temperature (ST) represents the radiative temperature of the Earth’s surface and is used as input to hydrological, agricultural, and meteorological science applications. Due to the synoptic nature of satellite imaging systems, ST products derived from space-borne platforms are invaluable for estimating ST at the local, regional, and global scale. In the past two decades, an emphasis has been placed on the need to develop algorithms necessary to deliver accurate surface temperature products to support the needs of science users. However, corresponding efforts to validate these products are hindered by the availability of quality ground-based reference measurements. The NOAA Surface Radiation Budget (SURFRAD) network is commonly used to support ST validation efforts, but their instrumentation is broadband (4–50 μ m) and several of their sites lack spatial uniformity. To address the apparent deficiencies within existing validation networks, this work discusses a prototype radiometer that was developed to provide surface temperature estimates to support validation efforts for spaceborne thermal instruments. Specifically, a prototype radiometer was designed, built, and calibrated to acquire ground reference data to be used to validate ST product(s) derived from Landsat 8 image data. Lab-based efforts indicate that these prototype instruments are accurate to within 1.28 K and initial field measurements demonstrate agreement to Landsat-derived ST products to within 1.37 K.


2020 ◽  
Vol 12 (6) ◽  
pp. 1023 ◽  
Author(s):  
Jinxin Guo ◽  
Huazhong Ren ◽  
Yitong Zheng ◽  
Shangzong Lu ◽  
Jiaji Dong

Landsat 8/thermal infrared sensor (TIRS) is suffering from the problem of stray light that makes an inaccurate radiance for two thermal infrared (TIR) bands and the latest correction was conducted in 2017. This paper focused on evaluation of land surface temperature (LST) retrieval from Landsat 8 before and after the correction using ground-measured LST from five surface radiation budget network (SURFRAD) sites. Results indicated that the correction increased the band radiance at the top of the atmosphere for low temperature but decreased such radiance for high temperature. The root-mean-square error (RMSE) of LST retrieval decreased by 0.27 K for Band 10 and 0.78 K for Band 11 using the single-channel algorithm. For the site with high temperature, the LST retrieval RMSE of the single-channel algorithm for Band 11 even reduced by 1.4 K. However, the accuracy of two of three split-window algorithms adopted in this paper decreased. After correction, the single-channel algorithm for Band 10 and the linear split-window algorithm had the least RMSE (approximately 2.5 K) among five adopted algorithms. Moreover, besides SURFRAD sites, it is necessary to validate using more robust and homogeneous ground-measured datasets to help solely clarify the effect of the correction on LST retrieval.


2021 ◽  
Vol 13 (5) ◽  
pp. 1012
Author(s):  
David Hidalgo García ◽  
Julián Arco Díaz

Over the past decade, satellite imaging has become a habitual way to determine the land surface temperature (LST). One means entails the use of Landsat 8 images, for which mono window (MW), single channel (SC) and split window (SW) algorithms are needed. Knowing the precision and seasonal variability of the LST can improve urban climate alteration studies, which ultimately help make sustainable decisions in terms of the greater resilience of cities. In this study we determine the LST of a mid-sized city, Granada (Spain), applying six Landsat 8 algorithms that are validated using ambient temperatures. In addition to having a unique geographical location, this city has high pollution and high daily temperature variations, so that it is a very appropriate site for study. Altogether, 11 images with very low cloudiness were taken into account, distributed between November 2019 and October 2020. After data validation by means of R2 statistical analysis, the root mean square error (RMSE), mean bias error (MBE) and standard deviation (SD) were determined to obtain the coefficients of correlation. Panel data analysis is presented as a novel element with respect to the methods usually used. Results reveal that the SC algorithms prove more effective and reliable in determining the LST of the city studied here.


2020 ◽  
Vol 12 (5) ◽  
pp. 791 ◽  
Author(s):  
Jingjing Yang ◽  
Si-Bo Duan ◽  
Xiaoyu Zhang ◽  
Penghai Wu ◽  
Cheng Huang ◽  
...  

Land surface temperature (LST) is vital for studies of hydrology, ecology, climatology, and environmental monitoring. The radiative-transfer-equation-based single-channel algorithm, in conjunction with the atmospheric profile, is regarded as the most suitable one with which to produce long-term time series LST products from Landsat thermal infrared (TIR) data. In this study, the performances of seven atmospheric profiles from different sources (the MODerate-resolution Imaging Spectroradiomete atmospheric profile product (MYD07), the Atmospheric Infrared Sounder atmospheric profile product (AIRS), the European Centre for Medium-range Weather Forecasts (ECMWF), the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2), the National Centers for Environmental Prediction (NCEP)/Global Forecasting System (GFS), NCEP/Final Operational Global Analysis (FNL), and NCEP/Department of Energy (DOE)) were comprehensively evaluated in the single-channel algorithm for LST retrieval from Landsat 8 TIR data. Results showed that when compared with the radio sounding profile downloaded from the University of Wyoming (UWYO), the worst accuracies of atmospheric parameters were obtained for the MYD07 profile. Furthermore, the root-mean-square error (RMSE) values (approximately 0.5 K) of the retrieved LST when using the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles were smaller than those but greater than 0.8 K when the MYD07, AIRS, and NCEP/DOE profiles were used. Compared with the in situ LST measurements that were collected at the Hailar, Urad Front Banner, and Wuhai sites, the RMSE values of the LST that were retrieved by using the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles were approximately 1.0 K. The largest discrepancy between the retrieved and in situ LST was obtained for the NCEP/DOE profile, with an RMSE value of approximately 1.5 K. The results reveal that the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles have great potential to perform accurate atmospheric correction and generate long-term time series LST products from Landsat TIR data by using a single-channel algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1778 ◽  
Author(s):  
Md Qutub Uddin Sajib ◽  
Tao Wang

The presence of two thermal bands in Landsat 8 brings the opportunity to use either one or both of these bands to retrieve Land Surface Temperature (LST). In order to compare the performances of existing algorithms, we used four methods to retrieve LST from Landsat 8 and made an intercomparison among them. Apart from the direct use of the Radiative Transfer Equation (RTE), Single-Channel Algorithm and two Split-Window Algorithms were used taking an agricultural region in Bangladesh as the study area. The LSTs retrieved in the four methods were validated in two ways: first, an indirect validation against reference LST, which was obtained in the Atmospheric and Topographic CORection (ATCOR) software module; second, cross-validation with Terra MODerate Resolution Imaging Spectroradiometer (MODIS) daily LSTs that were obtained from the Application for Extracting and Exploring Analysis Ready Samples (A ρ ρ EEARS) online tool. Due to the absence of LST-monitoring radiosounding instruments surrounding the study area, in situ LSTs were not available; hence, validation of satellite retrieved LSTs against in situ LSTs was not performed. The atmospheric parameters necessary for the RTE-based method, as well as for other methods, were calculated from the National Centers for Environmental Prediction (NCEP) database using an online atmospheric correction calculator with MODerate resolution atmospheric TRANsmission (MODTRAN) codes. Root-mean-squared-error (RMSE) against reference LST, as well as mean bias error against both reference and MODIS daily LSTs, was used to interpret the relative accuracy of LST results. All four methods were found to result in acceptable LST products, leaving atmospheric water vapor content (w) as the important determinant for the precision result. Considering a set of several Landsat 8 images of different dates, Jiménez-Muñoz et al.’s (2014) Split-Window algorithm was found to result in the lowest mean RMSE of 1.19 ° C . Du et al.’s (2015) Split-Window algorithm resulted in mean RMSE of 1.50 ° C . The RTE-based direct method and the Single-Channel algorithm provided the mean RMSE of 2.47 ° C and 4.11 ° C , respectively. For Du et al.’s algorithm, the w range of 0.0 to 6.3 g cm−2 was considered, whereas for the other three methods, w values as retrieved from the NCEP database were considered for corresponding images. Land surface emissivity was retrieved through the Normalized Difference Vegetation Index (NDVI)-threshold method. This intercomparison study provides an LST retrieval methodology for Landsat 8 that involves four algorithms. It proves that (i) better LST results can be obtained using both thermal bands of Landsat 8; (ii) the NCEP database can be used to determine atmospheric parameters using the online calculator; (iii) MODIS daily LSTs from A ρ ρ EEARS can be used efficiently in cross-validation and intercomparison of Landsat 8 LST algorithms; and (iv) when in situ LST data are not available, the ATCOR-derived LSTs can be used for indirect verification and intercomparison of Landsat 8 LST algorithms.


2011 ◽  
Vol 130-134 ◽  
pp. 4130-4134
Author(s):  
Wen Wu Zheng ◽  
Yong Nian Zeng

The main disadvantage of Land surface temperature (LST) retrieval methods from Landsat TM thermal channel images is that atmospheric profile parameters are needed, and MODIS has several near infrared bands that can be used to estimate atmospheric profile parameters. Two methods that could be used to retrieve the LST from Landsat TM and MODIS data were compared in this paper, the first of them is the mono-window algorithm developed by Qin et al. and the second is the single-channel algorithm developed by Jimenez-Munoz and Sobrino. Atmospheric profile parameters such as atmospheric moisture content, atmospheric transmittance and average atmospheric temperature have been estimated from MODIS data, and the land surface emissivity values have been estimated from a methodology based on spectral mixture analysis. Finally, a comparison between the LST measured in situ and retrieved by the algorithms over urban area of Changsha city in China is present. Result indicates that the two LST retrieval algorithms can get high-precision results in support of atmospheric parameters from MODIS images, the average deviation of mono-window algorithm is 0.76K, and the deviation of generalized single-channel algorithm is 1.23k.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jikang Wan ◽  
Min Zhu ◽  
Wei Ding

Many researchers have developed a variety of land surface temperature (LST) inversion algorithms based on satellite data. The main LST inversion algorithms include Radiative Transfer Equation (RTE), Single Channel (SC) algorithm, Mono Window (MW) algorithm, and Split Window (SW) algorithm. In this study, nine LST inversion algorithms were designed using Landsat-8 data and meteorological station data to test the inversion efficiency of different algorithms in different seasons and different locations. The results show that the error of various LST inversion algorithms will increase with the rise of LST. R2 of the inversion results of each LST algorithm and the measured data are all greater than 0.73°C in winter and about 0.5°C in the other seasons. By analyzing the stability of various algorithms inside and outside the city, it is found that the stability of each LST inversion algorithm inside the city is better than that outside the city. For the same surface features, the inversion temperature inside the city is 3–5°C higher than that outside the city. In addition, the sensitivity of various inversion algorithms to parameters was also analyzed. The influence of atmospheric transmittance on RTE, SC, and MW inversion algorithms is in logarithmic form. The effect of emissivity on each algorithm is linear. The influence of NDVI on the algorithms is mainly through the estimation of surface emissivity parameters to affect the inversion results. The effect of ascending radiation on SC (LST4 and LST5) is linear and on RTE (LST1 and LST2) is logarithmic. The effect of downslope radiation on SC and RTE is linear. The influence of atmospheric water vapor content on SW (LST7) is nonlinear.


2020 ◽  
Vol 38 (1) ◽  
Author(s):  
Pâmela Suélen Käfer

ABSTRACT. Land surface temperature (LST) is an important parameter in the investigation of environmental and climatic changes at various scales. However, estimating this parameter from the radiation emitted in the thermal infrared (TIR) region is a difficult task because the radiation measured by the satellite sensors is strongly affected by atmospheric effects. All LST retrieval methods require validation with field measurements. Nonetheless, the validation of this type of data is a challenge because the LST changes rapidly in time and the measurements must be performed together with the sensor overpass. In addition, most methodologies are developed and tested focusing on the Northern Hemisphere. Considering that operational ways of obtaining LST should be constantly investigated, the aim of this paper was to study the effect of the use of temperature-based laboratory measurements in the determination of the emissivity and LST retrieval from orbital remote sensing data. Moreover, it was intended to perform a comparative analysis among the most recent single-channel algorithms available on the literature, applied to band 10 (10.6-11.19 μm) of the Landsat 8 TIRS. The algorithms considered were: Single-Channel generalized (SC), Improved Single-channel (ISC) and Improved Mono-window (IMW). A field of coastal dunes was chosen as study area. Two sets of laboratory emissivity measurements were performed with field samples at different temperatures using a Fourier Transform Infrared (FT-IR). Emissivity and temperature data were obtained in the study area concomitantly with the satellite overpass. The Radiative Transfer Equation (RTE) with parameters of global atmospheric profiles was tested as a method of validation. A variation of approximately 2% in the emissivity in relation to the temperature was observed, which could be neglected. The FT-IR presents limitations on the period to acquire stability, however as long as this limitation is respected and the calibration approach correctly carried out, laboratory measurements can achieve optimum accuracy and replace field validation. Available spectral libraries of emissivity have also proved to be a good alternative. All evaluated single-channel methods are suitable for obtaining LST; however, ISC provided superior results in all analyzes, producing higher R² (0.99978) and lower RMSE (0.019) relative to the other algorithms tested.RECUPERAÇÃO DE TEMPERATURA DE SUPERFÍCIE TERRESTRE DA RADIÂNCIA TERMAL COLETADA PELO SENSOR TIRS/LANDSAT 8: APLICAÇÕES DE MEDIDAS DE CAMPO E LABORATÓRIO RESUMO. A temperatura da superfície terrestre (Land surface temperature - LST) é um importante parâmetro na investigação de mudanças ambientais e climáticas em várias escalas. Entretanto, estimar esse parâmetro da radiação emitida na região do infravermelho termal (TIR) é uma tarefa difícil, pois as radiações medidas pelos sensores dos satélites são fortemente afetadas por efeitos atmosféricos. Todos métodos de recuperação de LST requerem validação com medidas de campo. Porém, a validação deste tipo de dado é um desafio, visto que a LST muda rapidamente no tempo e as medidas devem ser realizadas em conjunto com a passagem do sensor. Além disso, a maioria das metodologias são desenvolvidas e testadas com foco no hemisfério norte. Tendo em vista que maneiras operacionais de se obter LST devem ser constantemente investigadas, o objetivo desta pesquisa foi estudar o efeito do uso de medidas de emissividade de laboratório tomadas com base em temperaturas na determinação da LST a partir de dados de sensoriamento remoto orbital. Ademais, pretendeu-se realizar uma análise comparativa entre os algoritmos single-channel mais recentes existentes na literatura, aplicados à banda 10 (10,6-11,19 μm) do Landsat 8 TIRS. Os algoritmos considerados foram: Single-Channel Generalizado (SCG), Improved Single-Channel (ISC) e Improved Mono-Window (IMW). Um campo de dunas costeiras foi escolhido como área de estudo. Dois conjuntos de medidas de emissividade de laboratório foram construídos com amostras de campo em diferentes temperaturas com uso de um Fourier Transform Infrared (FT-IR). Dados de emissividade e temperatura foram obtidos na área de estudo concomitamente com a passagem do sensor. A equação de transferência radiativa (Radiative Transfer Equation - RTE) com parâmetros de perfis atmosféricos globais foi testada como forma de validação de dados. Uma variação de aproximadamente 2% na emissividade em relação à temperatura foi observada, podendo ser negligenciada. O FT-IR apresenta limitações quanto ao período para adquirir estabilidade, porém respeitando esta limitação e realizando abordagem correta de calibração, medidas laboratoriais podem atingir ótima acurácia e substituir a validação de campo. Bibliotecas espectrais disponíveis de emissividade demonstraram ser também uma alternativa válida. Todos métodos Single-Channel avaliados são adequados para obter LST; no entanto, o ISC forneceu resultados superiores em todas as análises, produzindo maior R² (0,99978) e menor RMSE (0.019) em relação aos demais.


Sign in / Sign up

Export Citation Format

Share Document