scholarly journals Performance Comparison of Geoid Refinement between XGM2016 and EGM2008 Based on the KTH and RCR Methods: Jilin Province, China

2020 ◽  
Vol 12 (2) ◽  
pp. 324
Author(s):  
Qiong Wu ◽  
Hongyao Wang ◽  
Bin Wang ◽  
Shengbo Chen ◽  
Hongqing Li

The selection of an appropriate global gravity field model and refinement method can effectively improve the accuracy of the refined regional geoid model in a certain research area. We analyzed the accuracy of Experimental Geopotential Model (XGM2016) based on the GPS-leveling data and the modification parameters of the global mean square errors in the KTH geoid refinement in Jilin Province, China. The regional geoid was refined based on Earth Gravitational Model (EGM2008) and XGM2016 using both the Helmert condensation method with an RCR procedure and the KTH method. A comparison of the original two gravity field models to the GPS-leveling benchmarks showed that the accuracies of XGM2016 and EGM2008 in the plain area of Jilin Province are similar with a standard deviation (STD) of 5.8 cm, whereas the accuracy of EGM2008 in the high mountainous area is 1.4 cm better than that of XGM2016, which may be attributed to its low resolution. The modification parameters between the two gravity field models showed that the coefficient error of XGM2016 model was lower than that of EGM2008 for the same degree of expansion. The different modification limits and integral radii may produce a centimeter level difference in global mean square error, while the influence of the truncation error caused by the integral was at the millimeter level. The terrestrial gravity data error accounted for the majority of the global mean square error. The optimal least squares modification obtained the minimum global mean square error, and the global mean square error calculated based on XGM2016 model was reduced by about 1~3 cm compared with EGM2008. The refined geoid based on the two gravity field models indicated that both KTH and RCR method can effectively improve the STD of the geoid model from about six to three centimeters. The refined accuracy of EGM2008 model using RCR and KTH methods is slightly better than that of XGM2016 model in the plain and high mountain areas after seven-parameter fitting. EGM2008 based on the KTH method was the most precise at ± 2.0 cm in the plain area and ± 2.4 cm in the mountainous area. Generally, for the refined geoid based on the two Earth gravity models, KTH produced results similar to RCR in the plain area, and had relatively better performance for the mountainous area where terrestrial gravity data is sparse and unevenly distributed.

2018 ◽  
Vol 8 (1) ◽  
pp. 145-153 ◽  
Author(s):  
O.I. Apeh ◽  
E.C. Moka ◽  
V.N. Uzodinma

Abstract Spherical harmonic expansion is a commonly applied mathematical representation of the earth’s gravity field. This representation is implied by the potential coeffcients determined by using elements/parameters of the field observed on the surface of the earth and/or in space outside the earth in the spherical harmonic expansion of the field. International Centre for Gravity Earth Models (ICGEM) publishes, from time to time, Global Gravity Field Models (GGMs) that have been developed. These GGMs need evaluation with terrestrial data of different locations to ascertain their accuracy for application in those locations. In this study, Bouguer gravity anomalies derived from a total of eleven (11) recent GGMs, using sixty sample points, were evaluated by means of Root-Mean-Square difference and correlation coeficient. The Root-Mean-Square differences of the computed Bouguer anomalies from ICGEMwebsite compared to their positionally corresponding terrestrial Bouguer anomalies range from 9.530mgal to 37.113mgal. Additionally, the correlation coe_cients of the structure of the signal of the terrestrial and GGM-derived Bouguer anomalies range from 0.480 to 0.879. It was observed that GECO derived Bouguer gravity anomalies have the best signal structure relationship with the terrestrial data than the other ten GGMs. We also discovered that EIGEN-6C4 and GECO derived Bouguer anomalies have enormous potential to be used as supplements to the terrestrial Bouguer anomalies for Enugu State, Nigeria.


2020 ◽  
Vol 12 (12) ◽  
pp. 2066
Author(s):  
Alessandra Borghi ◽  
Riccardo Barzaghi ◽  
Omar Al-Bayari ◽  
Suhail Al Madani

In 2014, the Jeddah Municipality made a call for an estimate of a centimetric precision geoid model to be used for engineering and surveying applications, because the regional geoid model available at that time did not reach a sufficient precision. A project was set up to this end and dedicated sets of gravity and Global Positioning System (GPS)/levelling data were acquired in the framework of this project. In this paper, a thorough analysis of these newly acquired data and of the last available Global Gravity Field Models (GGMs) has been done in order to obtain a geoid undulation estimate with the prescribed precision. In the framework of the Remove–Compute–Restore (RCR) approach, the collocation method was used to obtain the height anomaly estimation that was then converted to geoid undulation. The remove and restore steps of the RCR approach were based on GGMs, derived from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and Gravity Recovery and Climate Experiment (GRACE) dedicated gravity satellite missions, which were used to improve the long wavelength components of the Earth’s gravity field. Furthermore, two different quasi-geoid collocation estimates were computed, based on gravity data only and on gravity plus GPS/levelling data (the so-called hybrid estimate). The best solutions were obtained with the hybrid geoid estimate. This was tested by comparison with an independent set of GPS/levelling geoid undulations that were not included in the computed solutions. By these tests, the precision of the hybrid geoid is estimated to be 3.7 cm. This precision proved to be better, by a factor of two, than the corresponding one estimated from the pure gravimetric geoid. This project has been also useful to verify the importance and reliability of GGMs developed from the last satellite gravity missions (GOCE and GRACE) that have significantly improved our knowledge of the long wavelength components of the Earth’s gravity field, especially in areas with poor coverage of terrestrial gravity data. In fact, the geoid models based on satellite-only GGMs proved to have a better performance, despite the lower spatial resolution with respect to high-resolution models (i.e., Earth Gravitational Model 2008 (EGM2008)).


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
L. E. Sjöberg ◽  
A. Gidudu ◽  
R. Ssengendo

AbstractFor many developing countries such as Uganda, precise gravimetric geoid determination is hindered by the low quantity and quality of the terrestrial gravity data. With only one gravity data point per 65 km2, gravimetric geoid determination in Uganda appears an impossible task. However, recent advances in geoid modelling techniques coupled with the gravity-field anomalies from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission have opened new avenues for geoid determination especially for areas with sparse terrestrial gravity. The present study therefore investigates the computation of a gravimetric geoid model overUganda (UGG2014) using the Least Squares Modification of Stokes formula with additive corrections. UGG2014 was derived from sparse terrestrial gravity data from the International Gravimetric Bureau, the 3 arc second SRTM ver4.1 Digital Elevation Model from CGIAR-CSI and the GOCE-only global geopotential model GO_CONS_GCF_2_TIM_R5. To compensate for the missing gravity data in the target area, we used the surface gravity anomalies extracted from the World Gravity Map 2012. Using 10 Global Navigation Satellite System (GNSS)/levelling data points distributed over Uganda, the RMS fit of the gravimetric geoid model before and after a 4-parameter fit is 11 cm and 7 cm respectively. These results show that UGG2014 agrees considerably better with GNSS/levelling than any other recent regional/ global gravimetric geoid model. The results also emphasize the significant contribution of the GOCE satellite mission to the gravity field recovery, especially for areas with very limited terrestrial gravity data.With an RMS of 7 cm, UGG2014 is a significant step forward in the modelling of a “1-cm geoid” over Uganda despite the poor quality and quantity of the terrestrial gravity data used for its computation.


2018 ◽  
Vol 11 (12) ◽  
pp. 4797-4815 ◽  
Author(s):  
Yihao Wu ◽  
Zhicai Luo ◽  
Bo Zhong ◽  
Chuang Xu

Abstract. A multilayer approach is set up for local gravity field recovery within the framework of multi-resolution representation, where the gravity field is parameterized as the superposition of multiple layers of Poisson wavelets located at different depths beneath the Earth's surface. The layers are designed to recover gravity signals at different scales, where the shallow and deep layers mainly capture the short- and long-wavelength signals, respectively. The depths of these layers are linked to the locations of different anomaly sources beneath the Earth's surface, which are estimated by wavelet decomposition and power spectrum analysis. For testing the performance of this approach, a gravimetric quasi-geoid model over the North Sea, QGNSea V1.0, is modeled and validated against independent control data. The results show that the multilayer approach fits the gravity data better than the traditional single-layer approach, particularly in regions with topographical variation. An Akaike information criterion (AIC) test shows that the multilayer model obtains a smaller AIC value and achieves a better balance between the goodness of fit of data and the simplicity of the model. Further, an evaluation using independent GPS/leveling data tests the ability of regional models computed from different approaches towards realistic extrapolation, which shows that the accuracies of the QGNSea V1.0 derived from the multilayer approach are better by 0.4, 0.9, and 1.1 cm in the Netherlands, Belgium, and parts of Germany, respectively, than that using the single-layer approach. Further validation with existing models shows that QGNSea V1.0 is superior with respect to performance and may be beneficial for studying ocean circulation between the North Sea and its neighboring waters.


2021 ◽  
Vol 13 (21) ◽  
pp. 4217
Author(s):  
Marek Trojanowicz ◽  
Magdalena Owczarek-Wesołowska ◽  
Yan Ming Wang ◽  
Olgierd Jamroz

This article concerns the development of gravimetric quasigeoid and geoid models using the geophysical gravity data inversion technique (the GGI method). This research work was carried out on the basis of the data used in the Colorado geoid experiment, and the mean quasigeoid (ζm) and mean geoid (Nm) heights, determined by the approaches used in the Colorado geoid experiment, were used as a reference. Three versions of the quasigeoid GGI models depending on gravity data were analyzed: terrestrial-only, airborne-only, and combined (using airborne and terrestrial datasets). For the combined version, which was the most accurate, a model in the form of a 1′×1′ grid was calculated in the same area as the models determined in the Colorado geoid experiment. For the same grid, the geoid–quasigeoid separation was determined, which was used to build the geoid model. The agreement (in terms of the standard deviation of the differences) of the determined models, with ζm and Nm values for the GSVS17 profile points, was ±0.9 cm for the quasigeoid and ±1.2 cm for the geoid model. The analogous values, determined on the basis of all 1′×1′ grid points, were ±2.3 cm and ±2.6 cm for the quasigeoid and geoid models, respectively.


2012 ◽  
Vol 56 (4) ◽  
pp. 909-927 ◽  
Author(s):  
Ramazan A. Abbak ◽  
Lars E. Sjöberg ◽  
Artu Ellmann ◽  
Aydin Ustun

2020 ◽  
Author(s):  
Tao Jiang ◽  
Yamin Dang ◽  
Chuanyin Zhang

Abstract Constructing a high precision and high resolution gravimetric geoid model in the mountainous area is a quite challenging task because of the high, rough nature of topography and the geological complexity. One way out is to use as many gravity observations from different sources as possible such as satellite, terrestrial and airborne gravity data, thus the proper combination of heterogeneous gravity datasets is critical. In a rough topographic area in Colorado, we computed a set of gravimetric geoid models based on different combination modes of satellite gravity models, terrestrial and airborne gravity data using the spectral combination method. The gravimetric geoid model obtained from the combination of satellite gravity model GOCO06S and terrestrial gravity data agrees with the GPS leveling measured geoid heights at 194 benchmarks in 5.8 cm in terms of the standard deviation of discrepancies, and the standard deviation reduces to 5.3 cm after including the GRAV-D airborne gravity data collected at ~6.2 km altitude into the data combination. The contributions of airborne gravity data to the signal and accuracy improvements of the geoid models were quantified for different spatial distribution and density of terrestrial gravity data. The results demonstrate that, although the airborne gravity survey was flown at a high altitude, the additions of airborne gravity data improved the accuracies of geoid models by 13.4% - 19.8% in the mountainous area (elevations > 2000 m) and 12.7% - 21% (elevations < 2000 m) in the moderate area in the cases of terrestrial gravity data spacings are larger than 15 km.


Sign in / Sign up

Export Citation Format

Share Document