scholarly journals Automatic Gully Detection: Neural Networks and Computer Vision

2020 ◽  
Vol 12 (11) ◽  
pp. 1743
Author(s):  
Artur M. Gafurov ◽  
Oleg P. Yermolayev

Transition from manual (visual) interpretation to fully automated gully detection is an important task for quantitative assessment of modern gully erosion, especially when it comes to large mapping areas. Existing approaches to semi-automated gully detection are based on either object-oriented selection based on multispectral images or gully selection based on a probabilistic model obtained using digital elevation models (DEMs). These approaches cannot be used for the assessment of gully erosion on the territory of the European part of Russia most affected by gully erosion due to the lack of national large-scale DEM and limited resolution of open source multispectral satellite images. An approach based on the use of convolutional neural networks for automated gully detection on the RGB-synthesis of ultra-high resolution satellite images publicly available for the test region of the east of the Russian Plain with intensive basin erosion has been proposed and developed. The Keras library and U-Net architecture of convolutional neural networks were used for training. Preliminary results of application of the trained gully erosion convolutional neural network (GECNN) allow asserting that the algorithm performs well in detecting active gullies, well differentiates gullies from other linear forms of slope erosion — rills and balkas, but so far has errors in detecting complex gully systems. Also, GECNN does not identify a gully in 10% of cases and in another 10% of cases it identifies not a gully. To solve these problems, it is necessary to additionally train the neural network on the enlarged training data set.

Author(s):  
Nicolae-Catalin Ristea ◽  
Andrei Anghel ◽  
Radu Tudor Ionescu

The interest of the automotive industry has progressively focused on subjects related to driver assistance systems as well as autonomous cars. In order to achieve remarkable results, cars combine a variety of sensors to perceive their surroundings robustly. Among them, radar sensors are indispensable because of their independence of light conditions and the possibility to directly measure velocity. However, radar interference is an issue that becomes prevalent with the increasing amount of radar systems in automotive scenarios. In this paper, we address this issue for frequency modulated continuous wave (FMCW) radars with fully convolutional neural networks (FCNs), a state-of-the-art deep learning technique. We propose two FCNs that take spectrograms of the beat signals as input, and provide the corresponding clean range profiles as output. We propose two architectures for interference mitigation which outperform the classical zeroing technique. Moreover, considering the lack of databases for this task, we release as open source a large scale data set that closely replicates real world automotive scenarios for single-interference cases, allowing others to compare objectively their future work in this domain. The data set is available for download at: http://github.com/ristea/arim.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haibin Chang ◽  
Ying Cui

More and more image materials are used in various industries these days. Therefore, how to collect useful images from a large set has become an urgent priority. Convolutional neural networks (CNN) have achieved good results in certain image classification tasks, but there are still problems such as poor classification ability, low accuracy, and slow convergence speed. This article mainly introduces the image classification algorithm (ICA) research based on the multilabel learning of the improved convolutional neural network and some improvement ideas for the research of the ICA based on the multilabel learning of the convolutional neural network. This paper proposes an ICA research method based on multilabel learning of improved convolutional neural networks, including the image classification process, convolutional network algorithm, and multilabel learning algorithm. The conclusions show that the average maximum classification accuracy of the improved CNN in this paper is 90.63%, and the performance is better, which is beneficial to improving the efficiency of image classification. The improved CNN network structure has reached the highest accuracy rate of 91.47% on the CIFAR-10 data set, which is much higher than the traditional CNN algorithm.


2019 ◽  
Author(s):  
Dan MacLean

AbstractGene Regulatory networks that control gene expression are widely studied yet the interactions that make them up are difficult to predict from high throughput data. Deep Learning methods such as convolutional neural networks can perform surprisingly good classifications on a variety of data types and the matrix-like gene expression profiles would seem to be ideal input data for deep learning approaches. In this short study I compiled training sets of expression data using the Arabidopsis AtGenExpress global stress expression data set and known transcription factor-target interactions from the Arabidopsis PLACE database. I built and optimised convolutional neural networks with a best model providing 95 % accuracy of classification on a held-out validation set. Investigation of the activations within this model revealed that classification was based on positive correlation of expression profiles in short sections. This result shows that a convolutional neural network can be used to make classifications and reveal the basis of those calssifications for gene expression data sets, indicating that a convolutional neural network is a useful and interpretable tool for exploratory classification of biological data. The final model is available for download and as a web application.


2020 ◽  
Vol 2 (2) ◽  
pp. 23
Author(s):  
Lei Wang

<p>As an important research achievement in the field of brain like computing, deep convolution neural network has been widely used in many fields such as computer vision, natural language processing, information retrieval, speech recognition, semantic understanding and so on. It has set off a wave of neural network research in industry and academia and promoted the development of artificial intelligence. At present, the deep convolution neural network mainly simulates the complex hierarchical cognitive laws of the human brain by increasing the number of layers of the network, using a larger training data set, and improving the network structure or training learning algorithm of the existing neural network, so as to narrow the gap with the visual system of the human brain and enable the machine to acquire the capability of "abstract concepts". Deep convolution neural network has achieved great success in many computer vision tasks such as image classification, target detection, face recognition, pedestrian recognition, etc. Firstly, this paper reviews the development history of convolutional neural networks. Then, the working principle of the deep convolution neural network is analyzed in detail. Then, this paper mainly introduces the representative achievements of convolution neural network from the following two aspects, and shows the improvement effect of various technical methods on image classification accuracy through examples. From the aspect of adding network layers, the structures of classical convolutional neural networks such as AlexNet, ZF-Net, VGG, GoogLeNet and ResNet are discussed and analyzed. From the aspect of increasing the size of data set, the difficulties of manually adding labeled samples and the effect of using data amplification technology on improving the performance of neural network are introduced. This paper focuses on the latest research progress of convolution neural network in image classification and face recognition. Finally, the problems and challenges to be solved in future brain-like intelligence research based on deep convolution neural network are proposed.</p>


2020 ◽  
Vol 12 (8) ◽  
pp. 1288 ◽  
Author(s):  
José R. G. Braga ◽  
Vinícius Peripato ◽  
Ricardo Dalagnol ◽  
Matheus P. Ferreira ◽  
Yuliya Tarabalka ◽  
...  

Tropical forests concentrate the largest diversity of species on the planet and play a key role in maintaining environmental processes. Due to the importance of those forests, there is growing interest in mapping their components and getting information at an individual tree level to conduct reliable satellite-based forest inventory for biomass and species distribution qualification. Individual tree crown information could be manually gathered from high resolution satellite images; however, to achieve this task at large-scale, an algorithm to identify and delineate each tree crown individually, with high accuracy, is a prerequisite. In this study, we propose the application of a convolutional neural network—Mask R-CNN algorithm—to perform the tree crown detection and delineation. The algorithm uses very high-resolution satellite images from tropical forests. The results obtained are promising—the R e c a l l , P r e c i s i o n , and F 1 score values obtained were were 0.81 , 0.91 , and 0.86 , respectively. In the study site, the total of tree crowns delineated was 59,062 . These results suggest that this algorithm can be used to assist the planning and conduction of forest inventories. As the algorithm is based on a Deep Learning approach, it can be systematically trained and used for other regions.


2018 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Weijia Li ◽  
Runmin Dong ◽  
Haohuan Fu ◽  
and Le Yu

Being an important economic crop that contributes 35% of the total consumption of vegetable oil, remote sensing-based quantitative detection of oil palm trees has long been a key research direction for both agriculture and environmental purposes. While existing methods already demonstrate satisfactory effectiveness for small regions, performing the detection for a large region with satisfactory accuracy is still challenging. In this study, we proposed a two-stage convolutional neural network (TS-CNN)-based oil palm detection method using high-resolution satellite images (i.e. Quickbird) in a large-scale study area of Malaysia. The TS-CNN consists of one CNN for land cover classification and one CNN for object classification. The two CNNs were trained and optimized independently based on 20,000 samples collected through human interpretation. For the large-scale oil palm detection for an area of 55 km2, we proposed an effective workflow that consists of an overlapping partitioning method for large-scale image division, a multi-scale sliding window method for oil palm coordinate prediction, and a minimum distance filter method for post-processing. Our proposed approach achieves a much higher average F1-score of 94.99% in our study area compared with existing oil palm detection methods (87.95%, 81.80%, 80.61%, and 78.35% for single-stage CNN, Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN), respectively), and much fewer confusions with other vegetation and buildings in the whole image detection results.


Sign in / Sign up

Export Citation Format

Share Document