scholarly journals Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review

2020 ◽  
Vol 12 (15) ◽  
pp. 2495 ◽  
Author(s):  
Ava Vali ◽  
Sara Comai ◽  
Matteo Matteucci

Lately, with deep learning outpacing the other machine learning techniques in classifying images, we have witnessed a growing interest of the remote sensing community in employing these techniques for the land use and land cover classification based on multispectral and hyperspectral images; the number of related publications almost doubling each year since 2015 is an attest to that. The advances in remote sensing technologies, hence the fast-growing volume of timely data available at the global scale, offer new opportunities for a variety of applications. Deep learning being significantly successful in dealing with Big Data, seems to be a great candidate for exploiting the potentials of such complex massive data. However, there are some challenges related to the ground-truth, resolution, and the nature of data that strongly impact the performance of classification. In this paper, we review the use of deep learning in land use and land cover classification based on multispectral and hyperspectral images and we introduce the available data sources and datasets used by literature studies; we provide the readers with a framework to interpret the-state-of-the-art of deep learning in this context and offer a platform to approach methodologies, data, and challenges of the field.

2019 ◽  
Vol 11 (9) ◽  
pp. 1006 ◽  
Author(s):  
Quanlong Feng ◽  
Jianyu Yang ◽  
Dehai Zhu ◽  
Jiantao Liu ◽  
Hao Guo ◽  
...  

Coastal land cover classification is a significant yet challenging task in remote sensing because of the complex and fragmented nature of coastal landscapes. However, availability of multitemporal and multisensor remote sensing data provides opportunities to improve classification accuracy. Meanwhile, rapid development of deep learning has achieved astonishing results in computer vision tasks and has also been a popular topic in the field of remote sensing. Nevertheless, designing an effective and concise deep learning model for coastal land cover classification remains problematic. To tackle this issue, we propose a multibranch convolutional neural network (MBCNN) for the fusion of multitemporal and multisensor Sentinel data to improve coastal land cover classification accuracy. The proposed model leverages a series of deformable convolutional neural networks to extract representative features from a single-source dataset. Extracted features are aggregated through an adaptive feature fusion module to predict final land cover categories. Experimental results indicate that the proposed MBCNN shows good performance, with an overall accuracy of 93.78% and a Kappa coefficient of 0.9297. Inclusion of multitemporal data improves accuracy by an average of 6.85%, while multisensor data contributes to 3.24% of accuracy increase. Additionally, the featured fusion module in this study also increases accuracy by about 2% when compared with the feature-stacking method. Results demonstrate that the proposed method can effectively mine and fuse multitemporal and multisource Sentinel data, which improves coastal land cover classification accuracy.


2020 ◽  
Vol 12 (6) ◽  
pp. 932 ◽  
Author(s):  
Renaud Marti ◽  
Zhichao Li ◽  
Thibault Catry ◽  
Emmanuel Roux ◽  
Morgan Mangeas ◽  
...  

To date, there is no effective treatment to cure dengue fever, a mosquito-borne disease which has a major impact on human populations in tropical and sub-tropical regions. Although the characteristics of dengue infection are well known, factors associated with landscape are highly scale dependent in time and space, and therefore difficult to monitor. We propose here a mapping review based on 78 articles that study the relationships between landscape factors and urban dengue cases considering household, neighborhood and administrative levels. Landscape factors were retrieved from survey questionnaires, Geographic Information Systems (GIS), and remote sensing (RS) techniques. We structured these into groups composed of land cover, land use, and housing type and characteristics, as well as subgroups referring to construction material, urban typology, and infrastructure level. We mapped the co-occurrence networks associated with these factors, and analyzed their relevance according to a three-valued interpretation (positive, negative, non significant). From a methodological perspective, coupling RS and GIS techniques with field surveys including entomological observations should be systematically considered, as none digital land use or land cover variables appears to be an univocal determinant of dengue occurrences. Remote sensing urban mapping is however of interest to provide a geographical frame to distribute human population and movement in relation to their activities in the city, and as spatialized input variables for epidemiological and entomological models.


Author(s):  
D. Rawal ◽  
A. Chhabra ◽  
M. Pandya ◽  
A. Vyas

Abstract. Land cover mapping using remote-sensing imagery has attracted significant attention in recent years. Classification of land use and land cover is an advantage of remote sensing technology which provides all information about land surface. Numerous studies have investigated land cover classification using different broad array of sensors, resolution, feature selection, classifiers, Classification Techniques and other features of interest from over the past decade. One, Pixel based image classification technique is widely used in the world which works on their per pixel spectral reflectance. Classification algorithms such as parallelepiped, minimum distance, maximum likelihood, Mahalanobis distance are some of the classification algorithms used in this technique. Other, Object based image classification is one of the most adapted land cover classification technique in recent time which also considers other parameters such as shape, colour, smoothness, compactness etc. apart from the spectral reflectance of single pixel.At present, there is a possibility of getting the more accurate information about the land cover classification by using latest technology, recent and relevant algorithms according to our study. In this study a combination of pixel-by-pixel image classification and object based image classification is done using different platforms like ArcGIS and e-cognition, respectively. The aim of the study is to analyze LULC pattern using satellite imagery and GIS for the Ahmedabad district in the state of Gujarat, India using a LISS-IV imagery acquired from January to April, 2017. The over-all accuracy of the classified map is 84.48% with Producer’s and User’s accuracy as 89.26% and 84.47% respectively. Kappa statistics for the classified map are calculated as 0.84. This classified map at 1:10,000 scale generated using recent available high resolution space borne data is a valuable input for various research studies over the study area and also provide useful information to town planners and civic authorities. The developed technique can be replicated for generating such LULC maps for other study areas as well.


2020 ◽  
Vol 12 (1) ◽  
pp. 9-12
Author(s):  
Arjun G. Koppad ◽  
Syeda Sarfin ◽  
Anup Kumar Das

The study has been conducted for land use and land cover classification by using SAR data. The study included examining of ALOS 2 PALSAR L- band quad pol (HH, HV, VH and VV) SAR data for LULC classification. The SAR data was pre-processed first which included multilook, radiometric calibration, geometric correction, speckle filtering, SAR Polarimetry and decomposition. For land use land cover classification of ALOS-2-PALSAR data sets, the supervised Random forest classifier was used. Training samples were selected with the help of ground truth data. The area was classified under 7 different classes such as dense forest, moderate dense forest, scrub/sparse forest, plantation, agriculture, water body, and settlements. Among them the highest area was covered by dense forest (108647ha) followed by horticulture plantation (57822 ha) and scrub/Sparse forest (49238 ha) and lowest area was covered by moderate dense forest (11589 ha).   Accuracy assessment was performed after classification. The overall accuracy of SAR data was 80.36% and Kappa Coefficient was 0.76.  Based on SAR backscatter reflectance such as single, double, and volumetric scattering mechanism different land use classes were identified.


Sign in / Sign up

Export Citation Format

Share Document