scholarly journals Slice-Based Instance and Semantic Segmentation for Low-Channel Roadside LiDAR Data

2020 ◽  
Vol 12 (22) ◽  
pp. 3830
Author(s):  
Hui Liu ◽  
Ciyun Lin ◽  
Dayong Wu ◽  
Bowen Gong

More and more scholars are committed to light detection and ranging (LiDAR) as a roadside sensor to obtain traffic flow data. Filtering and clustering are common methods to extract pedestrians and vehicles from point clouds. This kind of method ignores the impact of environmental information on traffic. The segmentation process is a crucial part of detailed scene understanding, which could be especially helpful for locating, recognizing, and classifying objects in certain scenarios. However, there are few studies on the segmentation of low-channel (16 channels in this paper) roadside 3D LiDAR. This paper presents a novel segmentation (slice-based) method for point clouds of roadside LiDAR. The proposed method can be divided into two parts: the instance segmentation part and semantic segmentation part. The part of the instance segmentation of point cloud is based on the regional growth method, and we proposed a seed point generation method for low-channel LiDAR data. Furthermore, we optimized the instance segmentation effect under occlusion. The part of semantic segmentation of a point cloud is realized by classifying and labeling the objects obtained by instance segmentation. For labeling static objects, we represented and classified a certain object through the related features derived from its slices. For labeling moving objects, we proposed a recurrent neural network (RNN)-based model, of which the accuracy could be up to 98.7%. The result implies that the slice-based method can obtain a good segmentation effect and the slice has good potential for point cloud segmentation.

2020 ◽  
Vol 34 (07) ◽  
pp. 12951-12958 ◽  
Author(s):  
Lin Zhao ◽  
Wenbing Tao

In this paper, we propose a novel joint instance and semantic segmentation approach, which is called JSNet, in order to address the instance and semantic segmentation of 3D point clouds simultaneously. Firstly, we build an effective backbone network to extract robust features from the raw point clouds. Secondly, to obtain more discriminative features, a point cloud feature fusion module is proposed to fuse the different layer features of the backbone network. Furthermore, a joint instance semantic segmentation module is developed to transform semantic features into instance embedding space, and then the transformed features are further fused with instance features to facilitate instance segmentation. Meanwhile, this module also aggregates instance features into semantic feature space to promote semantic segmentation. Finally, the instance predictions are generated by applying a simple mean-shift clustering on instance embeddings. As a result, we evaluate the proposed JSNet on a large-scale 3D indoor point cloud dataset S3DIS and a part dataset ShapeNet, and compare it with existing approaches. Experimental results demonstrate our approach outperforms the state-of-the-art method in 3D instance segmentation with a significant improvement in 3D semantic prediction and our method is also beneficial for part segmentation. The source code for this work is available at https://github.com/dlinzhao/JSNet.


Author(s):  
Y. Xie ◽  
K. Schindler ◽  
J. Tian ◽  
X. X. Zhu

Abstract. Deep learning models achieve excellent semantic segmentation results for airborne laser scanning (ALS) point clouds, if sufficient training data are provided. Increasing amounts of annotated data are becoming publicly available thanks to contributors from all over the world. However, models trained on a specific dataset typically exhibit poor performance on other datasets. I.e., there are significant domain shifts, as data captured in different environments or by distinct sensors have different distributions. In this work, we study this domain shift and potential strategies to mitigate it, using two popular ALS datasets: the ISPRS Vaihingen benchmark from Germany and the LASDU benchmark from China. We compare different training strategies for cross-city ALS point cloud semantic segmentation. In our experiments, we analyse three factors that may lead to domain shift and affect the learning: point cloud density, LiDAR intensity, and the role of data augmentation. Moreover, we evaluate a well-known standard method of domain adaptation, deep CORAL (Sun and Saenko, 2016). In our experiments, adapting the point cloud density and appropriate data augmentation both help to reduce the domain gap and improve segmentation accuracy. On the contrary, intensity features can bring an improvement within a dataset, but deteriorate the generalisation across datasets. Deep CORAL does not further improve the accuracy over the simple adaptation of density and data augmentation, although it can mitigate the impact of improperly chosen point density, intensity features, and further dataset biases like lack of diversity.


2021 ◽  
Vol 13 (18) ◽  
pp. 3621
Author(s):  
Muhammad Ibrahim ◽  
Naveed Akhtar ◽  
Khalil Ullah ◽  
Ajmal Mian

Accurate semantic segmentation of 3D point clouds is a long-standing problem in remote sensing and computer vision. Due to the unstructured nature of point clouds, designing deep neural architectures for point cloud semantic segmentation is often not straightforward. In this work, we circumvent this problem by devising a technique to exploit structured neural architectures for unstructured data. In particular, we employ the popular convolutional neural network (CNN) architectures to perform semantic segmentation of LiDAR data. We propose a projection-based scheme that performs an angle-wise slicing of large 3D point clouds and transforms those slices into 2D grids. Accounting for intensity and reflectivity of the LiDAR input, the 2D grid allows us to construct a pseudo image for the point cloud slice. We enhance this image with low-level image processing techniques of normalization, histogram equalization, and decorrelation stretch to suit our ultimate object of semantic segmentation. A large number of images thus generated are used to induce an encoder-decoder CNN model that learns to compute a segmented 2D projection of the scene, which we finally back project to the 3D point cloud. In addition to a novel method, this article also makes a second major contribution of introducing the enhanced version of our large-scale public PC-Urban outdoor dataset which is captured in a civic setup with an Ouster LiDAR sensor. The updated dataset (PC-Urban_V2) provides nearly 8 billion points including over 100 million points labeled for 25 classes of interest. We provide a thorough evaluation of our technique on PC-Urban_V2 and three other public datasets.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


Author(s):  
F. Politz ◽  
M. Sester

<p><strong>Abstract.</strong> Over the past years, the algorithms for dense image matching (DIM) to obtain point clouds from aerial images improved significantly. Consequently, DIM point clouds are now a good alternative to the established Airborne Laser Scanning (ALS) point clouds for remote sensing applications. In order to derive high-level applications such as digital terrain models or city models, each point within a point cloud must be assigned a class label. Usually, ALS and DIM are labelled with different classifiers due to their varying characteristics. In this work, we explore both point cloud types in a fully convolutional encoder-decoder network, which learns to classify ALS as well as DIM point clouds. As input, we project the point clouds onto a 2D image raster plane and calculate the minimal, average and maximal height values for each raster cell. The network then differentiates between the classes ground, non-ground, building and no data. We test our network in six training setups using only one point cloud type, both point clouds as well as several transfer-learning approaches. We quantitatively and qualitatively compare all results and discuss the advantages and disadvantages of all setups. The best network achieves an overall accuracy of 96<span class="thinspace"></span>% in an ALS and 83<span class="thinspace"></span>% in a DIM test set.</p>


Author(s):  
O. Majgaonkar ◽  
K. Panchal ◽  
D. Laefer ◽  
M. Stanley ◽  
Y. Zaki

Abstract. Classifying objects within aerial Light Detection and Ranging (LiDAR) data is an essential task to which machine learning (ML) is applied increasingly. ML has been shown to be more effective on LiDAR than imagery for classification, but most efforts have focused on imagery because of the challenges presented by LiDAR data. LiDAR datasets are of higher dimensionality, discontinuous, heterogenous, spatially incomplete, and often scarce. As such, there has been little examination into the fundamental properties of the training data required for acceptable performance of classification models tailored for LiDAR data. The quantity of training data is one such crucial property, because training on different sizes of data provides insight into a model’s performance with differing data sets. This paper assesses the impact of training data size on the accuracy of PointNet, a widely used ML approach for point cloud classification. Subsets of ModelNet ranging from 40 to 9,843 objects were validated on a test set of 400 objects. Accuracy improved logarithmically; decelerating from 45 objects onwards, it slowed significantly at a training size of 2,000 objects, corresponding to 20,000,000 points. This work contributes to the theoretical foundation for development of LiDAR-focused models by establishing a learning curve, suggesting the minimum quantity of manually labelled data necessary for satisfactory classification performance and providing a path for further analysis of the effects of modifying training data characteristics.


Author(s):  
Y. Cao ◽  
M. Previtali ◽  
M. Scaioni

Abstract. In the wake of the success of Deep Learning Networks (DLN) for image recognition, object detection, shape classification and semantic segmentation, this approach has proven to be both a major breakthrough and an excellent tool in point cloud classification. However, understanding how different types of DLN achieve still lacks. In several studies the output of segmentation/classification process is compared against benchmarks, but the network is treated as a “black-box” and intermediate steps are not deeply analysed. Specifically, here the following questions are discussed: (1) what exactly did DLN learn from a point cloud? (2) On the basis of what information do DLN make decisions? To conduct such a quantitative investigation of these DLN applied to point clouds, this paper investigates the visual interpretability for the decision-making process. Firstly, we introduce a reconstruction network able to reconstruct and visualise the learned features, in order to face with question (1). Then, we propose 3DCAM to indicate the discriminative point cloud regions used by these networks to identify that category, thus dealing with question (2). Through answering the above two questions, the paper would like to offer some initial solutions to better understand the application of DLN to point clouds.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2161 ◽  
Author(s):  
Arnadi Murtiyoso ◽  
Pierre Grussenmeyer

3D heritage documentation has seen a surge in the past decade due to developments in reality-based 3D recording techniques. Several methods such as photogrammetry and laser scanning are becoming ubiquitous amongst architects, archaeologists, surveyors, and conservators. The main result of these methods is a 3D representation of the object in the form of point clouds. However, a solely geometric point cloud is often insufficient for further analysis, monitoring, and model predicting of the heritage object. The semantic annotation of point clouds remains an interesting research topic since traditionally it requires manual labeling and therefore a lot of time and resources. This paper proposes an automated pipeline to segment and classify multi-scalar point clouds in the case of heritage object. This is done in order to perform multi-level segmentation from the scale of a historical neighborhood up until that of architectural elements, specifically pillars and beams. The proposed workflow involves an algorithmic approach in the form of a toolbox which includes various functions covering the semantic segmentation of large point clouds into smaller, more manageable and semantically labeled clusters. The first part of the workflow will explain the segmentation and semantic labeling of heritage complexes into individual buildings, while a second part will discuss the use of the same toolbox to segment the resulting buildings further into architectural elements. The toolbox was tested on several historical buildings and showed promising results. The ultimate intention of the project is to help the manual point cloud labeling, especially when confronted with the large training data requirements of machine learning-based algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3568 ◽  
Author(s):  
Takayuki Shinohara ◽  
Haoyi Xiu ◽  
Masashi Matsuoka

In the computer vision field, many 3D deep learning models that directly manage 3D point clouds (proposed after PointNet) have been published. Moreover, deep learning-based-techniques have demonstrated state-of-the-art performance for supervised learning tasks on 3D point cloud data, such as classification and segmentation tasks for open datasets in competitions. Furthermore, many researchers have attempted to apply these deep learning-based techniques to 3D point clouds observed by aerial laser scanners (ALSs). However, most of these studies were developed for 3D point clouds without radiometric information. In this paper, we investigate the possibility of using a deep learning method to solve the semantic segmentation task of airborne full-waveform light detection and ranging (lidar) data that consists of geometric information and radiometric waveform data. Thus, we propose a data-driven semantic segmentation model called the full-waveform network (FWNet), which handles the waveform of full-waveform lidar data without any conversion process, such as projection onto a 2D grid or calculating handcrafted features. Our FWNet is based on a PointNet-based architecture, which can extract the local and global features of each input waveform data, along with its corresponding geographical coordinates. Subsequently, the classifier consists of 1D convolutional operational layers, which predict the class vector corresponding to the input waveform from the extracted local and global features. Our trained FWNet achieved higher scores in its recall, precision, and F1 score for unseen test data—higher scores than those of previously proposed methods in full-waveform lidar data analysis domain. Specifically, our FWNet achieved a mean recall of 0.73, a mean precision of 0.81, and a mean F1 score of 0.76. We further performed an ablation study, that is assessing the effectiveness of our proposed method, of the above-mentioned metric. Moreover, we investigated the effectiveness of our PointNet based local and global feature extraction method using the visualization of the feature vector. In this way, we have shown that our network for local and global feature extraction allows training with semantic segmentation without requiring expert knowledge on full-waveform lidar data or translation into 2D images or voxels.


2019 ◽  
Vol 8 (5) ◽  
pp. 213 ◽  
Author(s):  
Florent Poux ◽  
Roland Billen

Automation in point cloud data processing is central in knowledge discovery within decision-making systems. The definition of relevant features is often key for segmentation and classification, with automated workflows presenting the main challenges. In this paper, we propose a voxel-based feature engineering that better characterize point clusters and provide strong support to supervised or unsupervised classification. We provide different feature generalization levels to permit interoperable frameworks. First, we recommend a shape-based feature set (SF1) that only leverages the raw X, Y, Z attributes of any point cloud. Afterwards, we derive relationship and topology between voxel entities to obtain a three-dimensional (3D) structural connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree to permit infrastructure-related classification. We study SF1/SF2 synergy on a new semantic segmentation framework for the constitution of a higher semantic representation of point clouds in relevant clusters. Finally, we benchmark the approach against novel and best-performing deep-learning methods while using the full S3DIS dataset. We highlight good performances, easy-integration, and high F1-score (> 85%) for planar-dominant classes that are comparable to state-of-the-art deep learning.


Sign in / Sign up

Export Citation Format

Share Document