scholarly journals Estimating 6D Aircraft Pose from Keypoints and Structures

2021 ◽  
Vol 13 (4) ◽  
pp. 663
Author(s):  
Runze Fan ◽  
Ting-Bing Xu ◽  
Zhenzhong Wei

This article addresses the challenge of 6D aircraft pose estimation from a single RGB image during the flight. Many recent works have shown that keypoints-based approaches, which first detect keypoints and then estimate the 6D pose, achieve remarkable performance. However, it is hard to locate the keypoints precisely in complex weather scenes. In this article, we propose a novel approach, called Pose Estimation with Keypoints and Structures (PEKS), which leverages multiple intermediate representations to estimate the 6D pose. Unlike previous works, our approach simultaneously locates keypoints and structures to recover the pose parameter of aircraft through a Perspective-n-Point Structure (PnPS) algorithm. These representations integrate the local geometric information of the object and the topological relationship between components of the target, which effectively improve the accuracy and robustness of 6D pose estimation. In addition, we contribute a dataset for aircraft pose estimation which consists of 3681 real images and 216,000 rendered images. Extensive experiments on our own aircraft pose dataset and multiple open-access pose datasets (e.g., ObjectNet3D, LineMOD) demonstrate that our proposed method can accurately estimate 6D aircraft pose in various complex weather scenes while achieving the comparative performance with the state-of-the-art pose estimation methods.

2021 ◽  
Vol 11 (9) ◽  
pp. 4241
Author(s):  
Jiahua Wu ◽  
Hyo Jong Lee

In bottom-up multi-person pose estimation, grouping joint candidates into the appropriately structured corresponding instance of a person is challenging. In this paper, a new bottom-up method, the Partitioned CenterPose (PCP) Network, is proposed to better cluster the detected joints. To achieve this goal, we propose a novel approach called Partition Pose Representation (PPR) which integrates the instance of a person and its body joints based on joint offset. PPR leverages information about the center of the human body and the offsets between that center point and the positions of the body’s joints to encode human poses accurately. To enhance the relationships between body joints, we divide the human body into five parts, and then, we generate a sub-PPR for each part. Based on this PPR, the PCP Network can detect people and their body joints simultaneously, then group all body joints according to joint offset. Moreover, an improved l1 loss is designed to more accurately measure joint offset. Using the COCO keypoints and CrowdPose datasets for testing, it was found that the performance of the proposed method is on par with that of existing state-of-the-art bottom-up methods in terms of accuracy and speed.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


Author(s):  
Gaetano Rossiello ◽  
Alfio Gliozzo ◽  
Michael Glass

We propose a novel approach to learn representations of relations expressed by their textual mentions. In our assumption, if two pairs of entities belong to the same relation, then those two pairs are analogous. We collect a large set of analogous pairs by matching triples in knowledge bases with web-scale corpora through distant supervision. This dataset is adopted to train a hierarchical siamese network in order to learn entity-entity embeddings which encode relational information through the different linguistic paraphrasing expressing the same relation. The model can be used to generate pre-trained embeddings which provide a valuable signal when integrated into an existing neural-based model by outperforming the state-of-the-art methods on a relation extraction task.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Zhao ◽  
Han Wang ◽  
Guang-Bin Huang

Recently the state-of-the-art facial age estimation methods are almost originated from solving complicated mathematical optimization problems and thus consume huge quantities of time in the training process. To refrain from such algorithm complexity while maintaining a high estimation accuracy, we propose a multifeature extreme ordinal ranking machine (MFEORM) for facial age estimation. Experimental results clearly demonstrate that the proposed approach can sharply reduce the runtime (even up to nearly one hundred times faster) while achieving comparable or better estimation performances than the state-of-the-art approaches. The inner properties of MFEORM are further explored with more advantages.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3529 ◽  
Author(s):  
Rabih Younes ◽  
Mark Jones ◽  
Thomas Martin

Most activity classifiers focus on recognizing application-specific activities that are mostly performed in a scripted manner, where there is very little room for variation within the activity. These classifiers are mainly good at recognizing short scripted activities that are performed in a specific way. In reality, especially when considering daily activities, humans perform complex activities in a variety of ways. In this work, we aim to make activity recognition more practical by proposing a novel approach to recognize complex heterogeneous activities that could be performed in a wide variety of ways. We collect data from 15 subjects performing eight complex activities and test our approach while analyzing it from different aspects. The results show the validity of our approach. They also show how it performs better than the state-of-the-art approaches that tried to recognize the same activities in a more controlled environment.


Author(s):  
Jielu Yan ◽  
MingLiang Zhou ◽  
Jinli Pan ◽  
Meng Yin ◽  
Bin Fang

3D human pose estimation describes estimating 3D articulation structure of a person from an image or a video. The technology has massive potential because it can enable tracking people and analyzing motion in real time. Recently, much research has been conducted to optimize human pose estimation, but few works have focused on reviewing 3D human pose estimation. In this paper, we offer a comprehensive survey of the state-of-the-art methods for 3D human pose estimation, referred to as pose estimation solutions, implementations on images or videos that contain different numbers of people and advanced 3D human pose estimation techniques. Furthermore, different kinds of algorithms are further subdivided into sub-categories and compared in light of different methodologies. To the best of our knowledge, this is the first such comprehensive survey of the recent progress of 3D human pose estimation and will hopefully facilitate the completion, refinement and applications of 3D human pose estimation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ling Zhu ◽  
Derek F. Wong ◽  
Lidia S. Chao

This paper presents a novel approach for unsupervised shallow parsing model trained on the unannotated Chinese text of parallel Chinese-English corpus. In this approach, no information of the Chinese side is applied. The exploitation of graph-based label propagation for bilingual knowledge transfer, along with an application of using the projected labels as features in unsupervised model, contributes to a better performance. The experimental comparisons with the state-of-the-art algorithms show that the proposed approach is able to achieve impressive higher accuracy in terms ofF-score.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8092
Author(s):  
Maomao Zhang ◽  
Ao Li ◽  
Honglei Liu ◽  
Minghui Wang

The analysis of hand–object poses from RGB images is important for understanding and imitating human behavior and acts as a key factor in various applications. In this paper, we propose a novel coarse-to-fine two-stage framework for hand–object pose estimation, which explicitly models hand–object relations in 3D pose refinement rather than in the process of converting 2D poses to 3D poses. Specifically, in the coarse stage, 2D heatmaps of hand and object keypoints are obtained from RGB image and subsequently fed into pose regressor to derive coarse 3D poses. As for the fine stage, an interaction-aware graph convolutional network called InterGCN is introduced to perform pose refinement by fully leveraging the hand–object relations in 3D context. One major challenge in 3D pose refinement lies in the fact that relations between hand and object change dynamically according to different HOI scenarios. In response to this issue, we leverage both general and interaction-specific relation graphs to significantly enhance the capacity of the network to cover variations of HOI scenarios for successful 3D pose refinement. Extensive experiments demonstrate state-of-the-art performance of our approach on benchmark hand–object datasets.


2019 ◽  
Vol 9 (20) ◽  
pp. 4316 ◽  
Author(s):  
Loise ◽  
Caputo ◽  
Porto ◽  
Calandra ◽  
Angelico ◽  
...  

This review aims to explore the state of the knowledge and the state-of-the-art regarding bitumen rejuvenation. In particular, attention was paid to clear things up about the rejuvenator mechanism of action. Frequently, the terms rejuvenator and flux oil, or oil (i.e., softening agent) are used as if they were synonymous. According to our knowledge, these two terms refer to substances producing different modifications to the aged bitumen: they can decrease the viscosity (softening agents), or, in addition to this, restore the original microstructure (real rejuvenators). In order to deal with the argument in its entirety, the bitumen is investigated in terms of chemical structure and microstructural features. Proper investigating tools are, therefore, needed to distinguish the different mechanisms of action of the various types of bitumen, so attention is focused on recent research and the use of different investigation techniques to distinguish between various additives. Methods based on organic synthesis can also be used to prepare ad-hoc rejuvenating molecules with higher performances. The interplay of chemical interaction, structural changes and overall effect of the additive is then presented in terms of the modern concepts of complex systems, which furnishes valid arguments to suggest X-ray scattering and Nuclear Magnetic Resonance relaxometry experiments as vanguard and forefront tools to study bitumen. Far from being a standard review, this work represents a critical analysis of the state-of-the-art taking into account for the molecular basis at the origin of the observed behavior. Furnishing a novel viewpoint for the study of bitumen based on the concepts of the complex systems in physics, it constitutes a novel approach for the study of these systems.


2020 ◽  
Vol 10 (2) ◽  
pp. 618
Author(s):  
Xianghan Wang ◽  
Jie Jiang ◽  
Yanming Guo ◽  
Lai Kang ◽  
Yingmei Wei ◽  
...  

Precise 3D hand pose estimation can be used to improve the performance of human–computer interaction (HCI). Specifically, computer-vision-based hand pose estimation can make this process more natural. Most traditional computer-vision-based hand pose estimation methods use depth images as the input, which requires complicated and expensive acquisition equipment. Estimation through a single RGB image is more convenient and less expensive. Previous methods based on RGB images utilize only 2D keypoint score maps to recover 3D hand poses but ignore the hand texture features and the underlying spatial information in the RGB image, which leads to a relatively low accuracy. To address this issue, we propose a channel fusion attention mechanism that combines 2D keypoint features and RGB image features at the channel level. In particular, the proposed method replans weights by using cascading RGB images and 2D keypoint features, which enables rational planning and the utilization of various features. Moreover, our method improves the fusion performance of different types of feature maps. Multiple contrast experiments on public datasets demonstrate that the accuracy of our proposed method is comparable to the state-of-the-art accuracy.


Sign in / Sign up

Export Citation Format

Share Document